

1. (a) Differentiate NFA and DFA with respected to transition and acceptance.
(b) Draw DFA which accepts even number of a 's over the alphabet $\{a, b\}$
(c) Construct DFA equivalent to the following Finite state machine. Figure 1
[5+5+6]
2. (a) Construct the Moose machine for Figure 2 Melay machine.
(b) Minimize the Finite automation Figure 3 below and show both the given and the reduced one are equivalent.
3. (a) Construct the NFA for the regular expression $r=0 * 1((0+1) 0 * 1) *(2+(0+1)(00) *)+0(00) *$
(b) Consider the FA and construct regular expressions that is accepted by it.
$[8+8]$
4. (a) Construct left linear and right linear grammar for the regular expression. $0 *(1(0+1))$ *
(b) Give the CFG to generating the following sets The set of all strings over alphabet $\{a, b\}$ with exactly twice as many a's as b's.
5. (a) Design a PDA which accepts all strings which can be derived from the following Grammar. Taking a suitable example verify the machine.
$S!a B / b A \quad A!a / a S / b A A \quad B!b / b S / A b b$
(b) Prove that acceptance by empty stack and by final state is equivalent.
$[8+8]$
6. (a) Explain the procedure involved in the design of Turing Machine.
(b) Design Turing Machine to recognize the following.
i. To find out proper substraction of two integers.
ii. To recognize $L=L\left(0^{*} 1\right)$.
[4+12]
7. (a) Discuss different languages and their corresponding machines.
(b) Write the design procedure of shift reduce parser by taking a suitable example [8+8]
8. (a) Explain Rice's theorem for undecidable problems.
(b) List the problems that are decidable for DCFL's.
