ANSWER KEY

EXERCISE 1

1	a
2	c
3	b
4	b
5	b
6	d
7	c
8	a
9	c
10	c
11	a
12	d
13	a
14	c
15	a
16	a
17	b
18	b
19	b
20	b
21	c
22	b
23	d
24	c
25	b
26	d
27	c
28	b
29	c
30	c
31	b
32	c
33	b
34	b
35	b
36	b
37	a
38	c
39	d
40	c

EXERCISE 2

1	a
2	b
3	c
4	d
5	a
6	b
7	c
8	b
9	b
10	c
11	d
12	c
13	d
14	b
15	c
16	b
17	c
18	d
19	a
20	c
21	c
22	d
23	d
24	d
25	a
26	d
27	a
28	d
29	c
30	c
31	b
32	a
33	a
34	c
35	a
36	d
37	d
38	b
39	c
40	c

EXERCISE 3

1	b
2	b
3	b
4	d
5	d
6	c
7	a
8	b
9	c
10	d
11	a
12	d
13	c
14	b
15	d
16	a
17	d
18	a
19	b
20	c
21	c
22	d
23	c
24	b
25	d
26	c
27	b
28	c
29	c
30	d
31	d
32	a
33	c
34	d
35	b
36	a
37	d
38	d
39	a
40	a

EXERCISE 4

1	c
2	a
3	b
4	b
5	b
6	b
7	d
8	b
9	d
10	c
11	a
12	d
13	b
14	a
15	c
16	c
17	a
18	b
19	b
20	a
21	d
22	c
23	a
24	b
25	d
26	d
27	c
28	b
29	d
30	b
31	b
32	d
33	b
34	b
35	c
36	b
37	c
38	b
39	d
40	b

EXERCISE 5

1	a
2	a
3	b
4	c
5	d
6	d
7	c
8	b
9	c
10	a
11	c
12	c
13	c
14	b
15	c
16	d
17	b
18	d
19	c
20	c
21	c
22	b
23	c
24	b
25	a
26	b
27	c
28	d
29	b
30	a
31	c
32	c
33	d
34	a
35	b
36	c
37	a
38	d
39	a
40	c

EXERCISE 6

1	a
2	b
3	a
4	b
5	d
6	d
7	c
8	c
9	c
10	b
11	c
12	a
13	c
14	c
15	b
16	c
17	a
18	c
19	c
20	b
21	b
22	a
23	b
24	d
25	a
26	d
27	b
28	c
29	a
30	c
31	a
32	c
33	b
34	c
35	b
36	d
37	a
38	d
39	c
40	b

1	a
2	b
3	a
4	a
5	d
6	c
7	c
8	d
9	d
10	d
11	d
12	a
13	d
14	a
15	b
16	b
17	a
18	c
19	a
20	c
21	a
22	d
23	d
24	c
25	a
26	c
27	d
28	c
29	b
30	a
31	d
32	c
33	a
34	b
35	b
36	c
37	c
38	b
39	a
40	b

EXERCISE 8

1	c
2	b
3	a
4	c
5	c
6	c
7	a
8	d
9	c
10	b
11	d
12	a
13	a
14	d
15	b
16	c
17	d
18	a
19	a
20	a

EXPLANATIONS

EXERCISE-1

1. Unit's digit of x is 3 . The number x can be written as $4 n+1$, because upon division by 4 , the remainder is 1 . Therefore,
$x^{x^{x^{x \cdots \cdots \infty}}=(\ldots .3)^{(4 n+1)^{(4 n+1) \cdots \infty}}=(. .3)^{4 n+1}, \text { because }(4 \mathrm{n}+1) \text { to the }, ~}$
power any number will always be of the form $4 n+1$ (using binomial expansion).
Therefore, unit's digit is 3 .
2. If the can contains x litres of paint, $[(x-5) / x]^{2}=49:(49+15)$.
$(x-5) / x=7: 8$. or, $X=40$ litres.
3. Sum of squares of first n natural nos. is $\frac{n(n+1)(2 n+1)}{6}$

Square of sum of first n natural number is $\frac{n^{2}(n+1)^{2}}{4}$
Ratio $=17: 325$
Solving we get $\mathrm{n}=25$
4. $\quad \mathrm{A}=1.15 \mathrm{~B}$
$B=1.075 \mathrm{C}, \mathrm{C}=92$ (given), therefore, Put the values \& get $\mathrm{B}=98.9, \therefore \mathrm{~A}=$ 113.735
5. Work done by 1 man in 1 day $=\frac{1}{44}$

Work done by 1 woman in 1 day $=\frac{1}{88}$
Work done by 1 boy in 1 day $=\frac{1}{132}$
$\Rightarrow \quad$ Work done by 1 man, 1 woman and 1 boy in

$$
1 \text { day }=\frac{1}{44}+\frac{1}{88}+\frac{1}{132}=\frac{1}{24}
$$

$\Rightarrow \quad$ Time required to complete the work $=24$ days
6. The problem can easily be solved by alligation. In container 1, the ratio of liquid A to the total liquid is $5 /(5+1)=5 / 6$. In container 2 , this ratio is $1 /(1+$ 3) $=1 / 4$ In the final mixture, this ratio will be $1 /(1+1)=1 / 2$ Alligating as shown, we get the required ratio as $3: 4$.

7. 12 has to be completely divisible by the ratio, which is not the case with $3: 2$
8. Suppose 90 units of work have to be done.
$\Rightarrow \quad$ No. of unit done by \quad A in one day $=10$ units
B in one day $=9$
C in one day $=6$
Work done by B and C in 2 days $=(9+6) \times 2$

$$
=30 \text { units }
$$

Remaining work $=90-30=60$ units

$$
\therefore \text { Time taken by } A=\frac{60}{10}=6 \text { days }
$$

Distance $=$	A		B		C
100	$:$	75			
			100	$:$	96

A	$:$	C		A	$:$	C
$100 \times \frac{100}{75}$	$:$	96	$=$	100	$:$	72

A beats C by $100-72=28 \mathrm{~m}$
10. 20 meters- In the time that A covers $360 \mathrm{~m}, \mathrm{~B}$ would cover 480 m .
11. (a) Milk in final/Milk in original $=[(a-b) / a]^{n}$, where $\mathrm{a}=$ Quantity of mixture;
$\mathrm{b}=$ amount taken out during each operation
$\mathrm{n}=$ No. of times the operation is repeated
Milk in final/Milk in original
$=[(40-10) / 40]^{3}=(3 / 4)^{3}$
Milk in final solution $=40 \times 27 / 64=16.875$
Water $=23.125$
Required ratio $=16.875: 23.125=27: 37$
12. No such pair exists. L.C.M has to be a multiple of H.C.F.
13. $\quad 6 \mathrm{a}^{2}=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
$\mathrm{l}: \mathrm{b}: \mathrm{h}=1: 2: 4$ Therefore, $\mathrm{b}=2 \mathrm{l} ; \mathrm{h}=4 \mathrm{l}$
Hence, $6 a^{2}=2\left[2 l^{2}+8 l^{2}+41^{2}\right]$
$6 a^{2}=281^{2}$
$a=\left(\frac{14}{3}\right)^{\frac{1}{2}} 1$
$\therefore a^{3}=\left(\frac{14}{3}\right)^{\frac{3}{2}} 1^{3}$
Volume ratio of cube and cuboid $=\mathrm{a}^{3}: \mathrm{lbh}$
$=\left(\frac{14}{3}\right)^{\frac{3}{2}}: 8$

14 \& 15. Assume the volume in each container as 16 lts Amount of alcohol at the end of the first process $=12$ lts.
Amount of alcohol at the end of the second process $=11$ lts.
Volume of the $1^{\text {st }}$ vessel at the end of process $1=20$ lts.
Volume at the end of process $2=21$ lts.
14-(c) ,15---(a)
16. Nos. ending with $2,3,7$ and 8 cannot be perfect squares
17. No. divisible by 2 ---50

No. divisible by $5 \quad---20 \quad$ [That includes 10 div of 2]
No. divisible by 3 ---33 [That includes 13 div of $2 \& 6$ div of 5]
Then the total Nos. $=50+10+14=74$
No. not div by 2,3 or 5 is $100-74=26$
18. $\left(\frac{3}{5}\right)^{\text {th }}$ of time $=6$ hrs.

Remaining time \& Distance $=4 \mathrm{hrs}, 40 \mathrm{~km}$

$$
\Rightarrow \text { Speed }=10 \mathrm{~km} / \mathrm{hr} .
$$

19. A player can play a maximum of 3 games. Hence, he can get a maximum of 3 points.
20. Let D_{1} and T_{1} and D_{2} and T_{2} denote the diameters and the thickness of the two coins, $\mathrm{V}_{1} / \mathrm{V}_{2}=\left(\mathrm{D}_{1}^{2} \mathrm{~T}\right) /\left(\mathrm{D}_{2}^{2} \mathrm{~T}_{2}\right) \Rightarrow(\mathrm{V} 1 / \mathrm{V} 2)=\left(\mathrm{D}_{1} / \mathrm{D}_{2}{ }^{2}\right)^{2}\left(\mathrm{~T}_{1} / \mathrm{T}_{2}\right)$. Therefore, $4 / 1=(4 / 3)^{2}\left(\mathrm{~T}_{1} / \mathrm{T}_{2}\right)$ or $\mathrm{T}_{1} / \mathrm{T}_{2}=9 / 4$.
21. Let the amount invested @ $10 \%=\mathrm{X}$

$$
\begin{aligned}
& \Rightarrow \quad X \times \frac{10}{100} \times 5=\frac{9}{100} \times(2600-X) \\
& \Rightarrow \quad X=1350
\end{aligned}
$$

22. After rationalization, $x=6-\sqrt{35}$ and $y=6+\sqrt{35}$. Therefore,
$x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)$
$=(12)\{[36+35-2(6)(\sqrt{35})]+[36+35+2(6)(\sqrt{35})]-(36-35)\}$
$=(12)(71+71-1)=1692$.
Alternatively: x is less than 1 and y is only marginally less than 12 . Therefore, $\mathrm{x}^{3}+\mathrm{y}^{3}$ means value slightly less than 12^{3} or 1728 . The only option slightly less than 1728 is 1692. Further, $x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)$, and $x+y=12$, therefore number must be a multiple of 12. Therefore 1269 is not possible.
23. Fifth power of any number ends with the unit's digit of that number (by rule of cyclicity). The rule applies when the power is any power of 5 . Therefore, required unit's digit is same as the unit's digit of $1+2+3+\ldots .+99$, which is equal to $\frac{99 \times 100}{2}$, which ends with 0 .
24. Ratio of white mice to total mice.
$=\frac{1}{1 / 2}: \frac{1}{1 / 8}=1.4=\frac{1}{4}: 1$
Ratio of gray mice to total mice
$\frac{1}{1 / 3}: \frac{1}{1 / 9}=3: 9=1: 3=\frac{1}{3}: 1$
\therefore Ratio of white mice to grey mice $=\frac{1}{4}: \frac{1}{3}=3: 4$
25. \quad Rebate $=0.25 \times 32=8$
$40 / 8=5$
26. Use options.
27. Use options. Moreover, x must be less than 1 .

28
$x^{2}-y^{2}=145 \quad \Rightarrow \quad(x-y)(x+y)=145$

$$
(x-y)=\frac{145}{29}=5
$$

29. Let the no. of persons insured by 100
\therefore annual premium earned $=250 \times 100$

$$
=25000
$$

Given that 1 out of every 100 will incur the hospitalization bill of Rs. 15000 It is also given that insurance cover will be 80% of hospitalization bill subject to an upper limit of Rs. 18900
Thus the person incurring a bill of Rs. 15000 will get Rs. $12000\left(\because \frac{80}{100} \times 15000\right)$
from insurance company.
Also, the insurance to incur an administrative cost of 10% of the revenue
$\frac{10}{100}(25000)=2500$
\therefore Total cost of the firm $=12000$

$$
\frac{2500}{14500}
$$

Hence net revenue of the insurance firm $=25000-14500$

$$
=10500
$$

\therefore Profit per person $=\frac{10500}{100}=105$
30. Given: Instead of 1, 1.6 people incur the hospitalization Bill.
\therefore cut of insurance firm $=12000 \times 1.6$

$$
=19200
$$

Now let the total amount of annual premium be x
\therefore Total cost of the firm $=19200+0.1 \mathrm{x}$
Since the firm wants to maintain same profit per person
$\therefore \mathrm{x}-(19200+0.1 \mathrm{x})=10500$
$0.9 x=29700$
$x=33000$
\therefore Premium to be charged per person if the firm wants to maintain same level of profit
$=\frac{33000}{100}=330$
31. Increase $=30+20+(30 \times 20) / 100$
(by $\mathrm{A}+\mathrm{B}+\mathrm{AB}$ concept)
32. $48 \times 48=36 \times 64=2304$
33. 10%

Rs. $150 \times 80 \%=$ Rs. 120
\Rightarrow Rs. $120-108=12$
$\frac{12}{120} \times 100=10 \%$
34. Compare $\left(2^{3}\right)^{100}$ and $\left(3^{2}\right)^{100}$
35. $(11+21)-4=28$. Or, $\mathrm{xk}_{1}+11 \& \mathrm{xk}_{2}+21$ then $\left[\mathrm{x}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)+32\right] / \mathrm{x}$ leaves remainder $4 . \quad \therefore$ the divisor must be 28 .
36. Ratio of work done by $\mathrm{A}: \mathrm{B}: \mathrm{C}=\frac{1}{20}: \frac{1}{25}: \frac{1}{30}=15: 12: 10$
$\mathrm{A}-\mathrm{B}=\frac{3}{37} \times 2220=$ Rs. 180
37. Rs. 2250
38. $1.1!+2.2!+3.3!+\ldots .+$ n.n1
$=(2-1) 1!+(3-1) .2!+(4-1) \cdot 3!+\ldots \ldots \ldots .[(n+1)-1] . n!$
$=2!-1+3!-2!+4!-3!\ldots \ldots \ldots \ldots \ldots+(n+1)!-n!$
$=(\mathrm{n}+1)!-1$
39. If $a+b+c=0$, then $a^{3}+b^{3} c^{3}=3 a b c$
$\Rightarrow \frac{(x+y+z)^{3}}{x y z}=\frac{\left(3 x^{\frac{1}{3}} y^{\frac{1}{3}} z^{\frac{1}{3}}\right)^{3}}{x y z}=27$
40. Sum of digits of the numbers at even places $=7+6+B+A=13+B+A$

Sum of the digit at odd places $=B+A+1+1=B+A+2$
Their difference $=13+B+A-B-A-2=11$
Thus, No. is a multiple of 11 .
Ans.
(C)

EXERCISE - 2

1. $\mathrm{N}=$
$\frac{1}{4}\left(\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \infty\right)=\frac{1}{4}\left(\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots \ldots\left(\frac{1}{n}-\frac{1}{n+1}\right)\right)$,
when number of terms is assumed to be n .
$\mathrm{N}=\frac{1}{4}\left(\frac{1}{1}-\frac{1}{n+1}\right)=\frac{1}{4}\left(\frac{n}{n+1}\right)=\frac{1}{4}\left(\frac{1}{1+(1 / n)}\right)$. When n approaches
infinity, $1 / \mathrm{n}$ approaches 0 . Therefore, we get $\mathrm{N}=\frac{1}{4}$.
2. Work is done in $n+(n-1)+(n-2)+(n-3)+\ldots 3+2+1=n(n+1) / 2$ days. We get $n(n+1) / 2=n(2 n / 3)$ days, hence $n=3$.
3. checking the options we see that 21 is the factor of both the nos. only in option (c)
4. 12%
5. $1: 3: 6$
6. Using options.
7. $\mathrm{S}=1 / 9 \mathrm{P}$,
$\mathrm{T}=\mathrm{R}$
Thus, $\quad S=\operatorname{PxTxR} / 100$
$\Rightarrow 1 / 9=\mathrm{RxR} / 100$
$\Rightarrow R=10 / 3=3.33$
8. In the original solution we have 0.3 litres of salt and 5.7 litres of water then 1 litres of water is evaporated and we are left out with 0.3 litres of salt and 4.7 litres of water. So the percentage of salt in the solution is 6%.
9. 13. Use options.

Let the parts be x and $24-x$.
$7 x+5(24-x)=146$
$\Rightarrow 2 x+120=146$
$\Rightarrow 2 x=26$
$\Rightarrow x=13$
10. The given inequality involves a quadratic equation which is greater than zero. Hence the roots are either both positive, or both negative. The inequality can be reduced to $(x-1)(x-2)>0$. This given $(x>2)$ as one range
and $(x<1)$ as the other. Thus in-between these two extreme values, i.e. in the range ($1 \leq x \leq 2$), there is no value of x which satisfies the given inequality.
11. Each lamp burns 12 cubic feet of gas per hour, i.e. $1 / 5$ cubic feet of gas per minute. He takes one minute to go from one lamppost to the other. When he lights the last lamppost, first lamppost will burn for 99 minutes, second for 98 minutes. gas used $=1 / 5(99+98+97+\ldots . .+2+1)=990$
12. If IBM initially quoted Rs. 7x lakhs, SGI quoted
$4 x$ lakhs. IBM's final quote $=(4 x-1)$ lakhs.
$(4 \mathrm{x}-1) / 4 \mathrm{x}=3 / 4$
$\mathrm{x}=1$
IBM's bid winning price $=$ Rs. 3 lakhs.
13. The prime factors are $2,3,7$ and 11 .
14. In fact, she takes out 5% of the existing volume of wine in every operation. After 1 st operation concentration of wine is 95%
After $2^{\text {nd }}$ operation concentration of wine is $95 \times 0.95=90.25 \%$
After $3^{\text {rd }}$ operation concentration of wine is $90.25 \times(0.95)=85.7375 \%$
Obviously after the $4^{\text {th }}$ operation the concentration of wine will be less than 85\%.
15.
Step 4
\rightarrow Final amounts
Step 3
\rightarrow Chintu gives Ajay
Step 2
\rightarrow Bunti gives Chintu
Or 1
Step 1 Ajay gives Bunti
Or
\rightarrow Initial amounts

$\frac{\text { Ajay }}{16}$	$\frac{\text { Bunti }}{16}$	$\frac{\text { Chintu }}{16}$
$16-8$	16	$16+8$
8	16	24
8	$16+12$	$24-12$
8	28	12
$8+14$	$28-14$	12
22	14	12

16 Since $51=49+2$, we have to find the remainder when 2^{138} is divided by 7. Now, $2^{138}=8^{46}=(7+1)^{46}$. Therefore remainder is 1 .
17. $10!+11!+12!+13!+\ldots+1000!=10!(1+11+11 \times 12+\ldots$.
$=10!(12+11 \times 12+\ldots)=.10!(12)(1+11+\ldots .$.$) .$
This contain $8+2=10$ number of 2 's.
18. $(80-2)^{2}+(80-1)^{2}+(80)^{2}+(80+1)^{2}+(80+2)^{2}=5 \times 80^{2}+10=32010$.
19. Let the Max marks $=100 \Rightarrow$ Arjun got $40-0.1(40)=36$ marks; Bheem got 36

- ($1 / 9$) $36=32$ marks
\Rightarrow Arjun + Bheem $=68$ marks
\Rightarrow Marks obtained by Karan $=68-(7 / 17) 68=40$ marks \Rightarrow Karan has just passed.

20. $x^{3}-x=x\left(x^{2}-1\right)=x(x+1)(x-1)$. $x,(x+1)$ and $(x-1)$ being three consecutive numbers, one of them must be divisible by 3 . So $x^{3}-x$ is divisible by 3 . Now as ' x ' is odd, let $x=2 p+1$.
$\therefore x^{3}-x=(2 p+1)(2 p+2)(2 p)=4 p(2 p+1)(p+1)$
Now, p and $(p+1)$ being two consecutive numbers, one of them must be even. So, $x^{3}-x$ is divisible by $4 \times 2=8$.
Thus, $x^{3}-x$ is divisible by $8 \times 3=24$
Remainder when $x^{3}-x+1$ is divisible by 24 is 1
21. After first transfer, the amount of wine in $1^{\text {st }}=9$
amount of water in $1^{\text {st }}=3$
amount of wine in IInd $=3$
amount of water in II nd = 1
3 litres drawn from $1^{\text {st }}$ contains $\frac{3}{4} \times 3=\frac{9}{4} \quad$ litres of wine \& $\quad \frac{1}{4} \times 3=\frac{3}{4}$ litres of water.
3 litres drawn from II nd contains $\frac{9}{4}$ litres of wine $\& \frac{3}{4}$ litres of water
\therefore Amount of wine in $1^{\text {st }}$ vessel after $2^{\text {nd }}$ transfer $=9-\frac{9}{4}+\frac{9}{4}=9$
Amount of water in $1^{\text {st }}$ vessel after $2^{\text {nd }}$ transfer $=3-\frac{3}{4}+\frac{3}{4}=3$
Similarly for II nd vessel, wine $=3-\frac{9}{4}+\frac{9}{4}=3$ water $=3-\frac{3}{4}+\frac{3}{4}=3$
\therefore Ratio is same in both the vessels.
22. Plug in the answer choices and verify.
23. $(2.89)^{0.5}=\left(\frac{289}{100}\right)^{1 / 2}=\left(\frac{17^{2}}{10^{2}}\right)^{1 / 2}=\frac{17}{10}=1.7$. greatest no. is (d)
24. If they are 50% then the choices should be equal.
25. Let the total volume of each utensil be 28 lt . Thus total milk after mixing $=$ $24+20+21=65 \mathrm{lt}$. Total water $=4+8+7=19 \mathrm{lt}$. Therefore final ratio $=65: 19$.
26. Multiply the last digits of the nos.
27. If the number of cats is less than 9, and 9 from the total escaped, at least one dog has to escape. Hence, the no. of cats cannot be greater than 9 .
28. (d)

2/3 of work was done.
$\Rightarrow 1 / 3$ of work is left.
\Rightarrow A does $1 / 3$ work in 20 days.
\Rightarrow A does 1 work in 60 days.
29. (c) Best done from the choices. Choice (a) is wrong because small hand will be at 11 if the hands are interchanged; choice (b) is also wrong because small hand will be at 2 and similarly choice (d) is also wrong because small hand will be at 4 (it should be between 6 and 7 according to the question). Hence the correct answer is (c).
30. 10.25%

Use $a+b+a b / 100$
$a=b=5 \%$
31. let x be total number of student then 72% of $x+44 \%$ of $x-40=x$ and we get $x=250$
32. Favourable case is C wins. The probability of this is $1 / x^{1 / x} x^{1 / 2} 1 / 8$.

Sample space comprises wins of all the five people. The probability of this $1 / 2$
$+(1 / 2)^{2}+(1 / 2)^{3}+(1 / 2)^{4}+(1 / 2)^{5}=31 / 32$
Hence, the probability that C wins is $1 / 8 /(31 / 32)=4 / 31$.
33. The total no. of terms in the expansion of the given binomial is $7+1=8$ (even). Hence, there'll be two mid-terms : $\frac{(7+1) \text { th }}{2}$ term and $\frac{(7+3) \text { th }}{2}$ term
$\mathrm{T}_{4}={ }^{7} \mathrm{C}_{3}(\mathrm{x} / 2)^{4}(-4 / \mathrm{x})^{3}=-^{7} \mathrm{C}_{3} 4 \mathrm{x}$
$\mathrm{T}_{5}={ }^{7} \mathrm{C}_{4}(\mathrm{x} / 2)^{3}(-4 / \mathrm{x})^{4}=-{ }_{-}^{7} \mathrm{C}_{3} 32 \mathrm{x}$
34. Distance between two given points is 3 units. Since the area is 6 units it's second side must be 4 units. Hence third vertex can be $(1,2)$ or $(1,-6)$ or $(-2$, $2)$ or ($-2,6$). Ans c.
35. Given points are the vertices of a right angled triangle with right angle at (a, a). It's sides forming the right angle are a and $a . \therefore a^{2} / 2=2 \Rightarrow \mathrm{a}^{2}=4 \therefore \mathrm{a}= \pm$ 2.
36. Since sum of any two sides of a triangle is greater than the third side $\Rightarrow(r-$ 1) $+\mathrm{r}>\mathrm{r}+1 \Rightarrow \mathrm{r}>2$.
37. Number of days $=$ Field available $/ 10=22 \times 14 \times 14 /(7 \times 100)=6.16$ days $=6$ days
38. Out of 10 position select two, no. of ways $={ }^{10} \mathrm{C}_{2}$. In these two positions A 1 and A2 can be arranged in one way only. And on remaining, 8 candidates can be arrange in 8 ! Ways. So total ways $={ }^{10} \mathrm{C}_{2} .8$!
39. Number of diagonals of a polygon of n sides $={ }^{n} C_{2}-n=n(n-3) / 2=107 / 2=$ 35.
40. Percentage of the candidates who failed in at least one subject $=n(M \cup E)=$ $\mathrm{n}(\mathrm{M})+\mathrm{n}(\mathrm{E})-\mathrm{n}(\mathrm{M} \cap \mathrm{E})=25+20-10=35 \therefore$ Percentage of the candidates who passed in both the subjects $=65$.
$\therefore 65 \mathrm{x} / 100=2600 \Rightarrow \mathrm{x}=4000$

EXERCISE - 3

1. $626!-625!=625!(626-1)=(625!)(625)$. The number of zeros in $625!$ is $125+$ $25+5+1=156$. But, the number of 5's from 625 (the other factor) also needs
to be counted, which is 4 . Therefore total number of zeros is 160 .
2. \quad The cost price of the mixture $=(100 / 137.5)(75)=600 / 11 . \therefore$ Fraction of pure spirit in the mixture $=(600 / 11) \div 60=10 / 11 . \therefore$ the fraction of water is $1 / 11$. \therefore Ratio $10: 1$.
3. Since the traveler takes $\frac{4}{5}$ th of the time he makes his speed $5 / 4$ of original speed. \Rightarrow He increases his speed by $1 / 4$.
$\begin{array}{ll}\Rightarrow & 1 / 4=1 / 2 \mathrm{~km} / \mathrm{hr} \\ \Rightarrow & \text { speed }=2 \mathrm{~km} / \mathrm{hr} .\end{array}$
In second case he goes $1 / 2 \mathrm{~km} / \mathrm{hr}$ slower.
$\Rightarrow \quad 3 / 4$ of original speed
$\Rightarrow \quad$ he takes $4 / 3$ of time.
$\Rightarrow \quad 1 / 3$ of time $=5 / 2 \mathrm{hrs}$.
$\Rightarrow \quad$ time $=15 / 2 \mathrm{hrs}$
distance $=2 \times 15 / 2=15 \mathrm{~km}$
4. L.C.M of $6,9,15$ and 18 and 7 is 360 . and $360+4=364$
5. A, B and C are to share profit in the ratio $4: 3: 7 \mathrm{But}$, since A is to receive 10% of profit, only 90% is to be shared)
A^{\prime} s total share $=10 \%$ of profit $+4 / 14 \times 90 \%$ of profit $=6000$
or, $(10+180 / 7) \%$ of Profit $=6000$
or, $250 / 7 \% \mathrm{P}=6000 \Rightarrow \mathrm{P}=$ Rs. 16,800
B and C's share combined
$=10 / 14$ of the 90% profit $=\frac{10}{14} \times \frac{90}{100} \times 16800$
6. The clock would take 66 seconds to strike 12 . Between the $1^{\text {st }}$ and the $6^{\text {th }}$ striking of the clock there are 5 intervals of time, each interval being 6 seconds long. Hence for 11 intervals between 11 and 12 it takes 66 seconds.
7. The integral part is 1011 whose octal is obtained as
$(1011)_{2}=(13)_{8}$ after forming groups of three digits from right side. Similarly, the fractional part is 1111 which are grouped into groups of 3 starting from left side (contrary to what is done for integral part). Therefore fractional number in base 8 is 74 . Therefore, answer is 13.74 .
8. Let $\mathrm{CP}=100 . \Rightarrow \mathrm{MP}=120$ Profit $=8$
$\Rightarrow \mathrm{SP}=108$
Hence Discount $=(120-108) / 120 \times 100=10 \%$
9. If Harish delivers 100 glasses safely, he will get 300 paise

Let the no. of glasses he broke $=x$
Acc. to the Question,
$300-9 x-3 x=240$
$\Rightarrow \mathrm{x}=5$
10. Acc. to the Question.

A	B	C
6000	8000	10000
15%	10%	

remaining 75\% divided in proportion.
Let net profits $=X$
A^{\prime} 's share $=1080=0.15 \mathrm{X}+0.75 \mathrm{X} \times 6 / 24$
Or X = Rs 3200
$\therefore \quad$ B's share $=0.1 \mathrm{X}+0.75 \mathrm{X} \times 8 / 24=$ Rs 1120
\therefore C's share $=3200-1080-1120=$ Rs 1000
11. The given number N can be expressed as $N=899 n+63$ for some integer $n .899$ $=29 \times 31 . \quad 63=29 \times 2+5$. Then $\mathrm{N}=29(31 \mathrm{n})+29 \times 2+5$, i.e. the remainder left when divided by 29 is 5 .
12. First clock: $33 / 11=3 \mathrm{sec}$. Second clock: $22 / 11=2 \mathrm{sec}$. Sixth of the first: 15 sec . Eighth of the second: $14 \mathrm{sec} . \quad$ Difference $=1$.
13. Three wheels can complete respectively $60,36,24$ revolutions per minute. In other words these three wheels will take 1 second, 60/36 i.e. $5 / 3$ seconds and 60/24 i.e. $5 / 2$ seconds respectively to complete one revolution. LCM of 1,5/3, $5 / 2$ is $\{$ LCM of $1,5,5\} /\{$ HCF $1,3,2\}=5$. Thus after every 5 seconds the red spots on all the three wheels touch the ground. Hence they will touch the ground again after 5 seconds.
14. Number of questions in the test taken by team $A=270$

Let team A answer x number of questions for y hours
Then $x y=270$. Team B answers $x+7$ questions for $y-3$ hours Hence, $(x+7)(y-3)=300$
$\therefore \mathrm{x}=18$ and $\mathrm{y}=15$ or, team A answers 18 questions per hour.
15. Check by the options.
16. Let us assume that out of 100 , he obtained 72 marks, if he had attempted 4 more questions, he would have made one more mistake. Hence 3 correct answers secures him 12 marks more. This means each question carries $12 / 3=4$ marks and hence number of question is 25 .
17. After discount of 40%, amt $=300$.

After discount of 36%, amt $=320$
After discount of 4%, amt $=307.2$.
Hence diff $=7.20$
Average daily wages $=\frac{5 x+3 y+y+2 y+y}{5}=x+\left(\frac{7}{5}\right) y$
19. Since B is at the units place B can be one of $0,1,4,5,6,9$. If $B=0$ then $B E$ will be only one digit number, then (BE$)^{2}$ cannot be a three digit number. Also if B is other than 1 , then $(\mathrm{BE})^{2}$ will have more than three digits which is not in accordance with the given problem. Hence B must be equal to 1 . Since $(B E)^{2}=$ MPB and $B=1$, then E can be 1 or 9 only. But since 1 is already assigned to B, E must be equal to 9 . Then $19^{2}=361$ gives M is equal to 3 .
20. The maximum and the minimum five digit number that can be formed using only $0,1,2,3,4$ exactly once are 43210 and 10234 respectively. The difference between them is $43210-10234=32976$.
21. $X!+(X+1)!$ is evidently an even integer if $X \geq 2$.

But $X^{3}+X+5=$ even + even + odd $=$ odd.
22. $(12+14+10)=36$. Hence $100-36=64$
23. $54-24=30$. [100- $(54+10+12)]$
24. A can collect $2 \times 10+2=22$.
25. D collected 10 (from soln no. 24)
26. Hiring cost per day is Rs.1000. In order to minimize the cost, the truck should be only on the day when the storing cost exceeds Rs. 1000. At the end of the first day, the hired storing cost will be $150 \times 5=750$. At the end of the second day the storing cost for the day will be $120 \times 5=600$. At the end of the fourth day, the storing cost for that day will be $(120+250) \times 5=1850$. Since on the fourth day the storing cost is exceeding Rs.1000, the truck must be hired. Further at the end of the fifth day, the storing cost for that day will be 160×5 $=800$. At the end of the sixth day, the storing cost for that day will be $(160+$ $120) \times 5=1400$. Since on the sixth day the storing cost is exceeding Rs. 1000, the truck must be hired. Then in the end the truck must be hired on the seventh day to complete the job.
But the cost can be reduced further if the truck is hired on the fifth day instead of the sixth day. Storing cost on the fifth day is $160 \times 5=800$, but if the truck is hired on the fifth day, the storing cost for the sixth day will be $120 \times 5=600$.
27. Hiring cost per day is Rs. 1000 while the storage cost is Rs. 0.8 per cubic feet. In order to minimize the cost, the truck should be hired only on the day when the storing cost exceeds Rs. 1000.
At the end of the first day the storage cost will be $150 \times 0.8=120$. At the end of the second day the storage cost for that day will be $(150+120) \times 0.8=216$. At the end of the third day the storage cost for that day will be $(150+120+$ 180) $\times 0.8=360$. At the end of the fourth day the storage cost for that day will be $(150+120+180+250) \times 0.8=560$. At the end of the fifth day the storage cost for that day will be $(150+120+180+250+160) \times 0.8=688$. At the end of the sixth day the storage cost for that day will be $(150+120+180+250+160$ $+120) \times 0.8=784$. Thus there is no point in hiring the truck on any other day than on the seventh to send all the production units to the market.
28. Note that odd number when multiplied with the odd number gives the odd number. Hence if n is odd then n^{2} and n^{3} both will be odd. Since n^{3} is odd, n must be odd and n^{2} is odd.
29. From the figure it is clear that $\triangle \mathrm{BCF} \sim \triangle \mathrm{EDF} \Rightarrow \mathrm{BC} / . \mathrm{ED}=\mathrm{CF} / \mathrm{DF}$. Since side of the square is 20 and $\mathrm{CF}=5 \therefore \mathrm{DF}=15 \therefore 6 / \mathrm{DE}=5 / 15 \Rightarrow \mathrm{DE}=18$.
30. By the properties of the numbers the difference between any number and a number obtained by interchanging it's digits is always divisible by 9 .
31. The last digit in the product can be one of the required digits if and only if the last digit of each of the numbers is one of the numbers $1,3,7$, or $9 . \therefore$ Probability of choosing each of the four numbers is $4 / 10$. As last digit of required numbers can be chosen in four different ways and total number of ways of choosing a digit at units place is $10 . \therefore$ Required probability $=2 / 5$. $2 / 5 \cdot 2 / 5 \cdot 2 / 5=(2 / 5)^{4}=16 / 625$.
32. Only one day per 20 days produces the rainbow. \therefore out of 20 days 19 days can not produce the rainbow. Hence their percentage $=100 x(19 / 20)=95 \%$.
33. Since the face cards are removed there will be 10 cards of each suit. Total number of ways of drawing four cards $={ }^{40} \mathrm{C}_{4}$. Favourable number of cases will be $10 \times 9 \times 8 \times 7$. Hence the required probability is $10 \times 9 \times 8 \times 7 /{ }^{40} \mathrm{C}_{4}$
34. Possible arrangements are

1	1	3	$\Rightarrow{ }^{5} \mathrm{C}_{1}{ }^{4} \mathrm{C}_{1}{ }^{3} \mathrm{C}_{3} 3=60$
2	2	1	$\Rightarrow{ }^{5} \mathrm{C}_{2}{ }^{3} \mathrm{C}_{2} \mathrm{C}_{1} 3=90$

So total is 150 Ways
35. Draw ZX paralle to AY
$\therefore \Delta C Z X-\triangle C A Y \Rightarrow C Z / C A=Z X / A Y$
$\therefore 2 / 5=4 / A Y \Rightarrow A Y=10 \therefore B=(0,10)$.
36. The total volume of the cones will be given by : $1 / 3\left(\pi r^{2} h_{1}+\pi r^{2} h_{2}\right)=1 / 3 \pi r\left(h_{1}\right.$ $+h_{2}$). Where h_{1} and h_{2} will be the respective heights which is nothing but the distance between the two vertices of the cones joined base to base which is given to be 12 . Thus the volume will be $1 / 3\left(\pi \times 7^{2} \times 12\right)=616 \mathrm{~cm}^{3}$. Thus
37. The perpendicular distance of point $(3,5)$ from the given line is the magnitude of $|(4 \times 3-3 \times 5)+1| / \sqrt{ }\left(4^{2}+3^{2}\right)=2 / 5=0.4$
38. The volume of the larger cylinder will be $1 / 3 \times \pi 3^{2} \times \mathrm{h}=3 \times 1 / 3 \times \pi .3^{2} .7$ Thus $\mathrm{h}=21$
39. Let the radii be $2 x$ and $3 x$. Then the ratio volumes is $4 / 3 \times \pi \times(2 x)^{3}: 4 / 3 \times \pi$ $x(3 x)^{3}=8: 27$
40. In the letters D, R, A, U, G, H, T vowels are A and U which can be put together in 2 ! ways and these two vowels together with the other five letters can be arranged in $6!$ Ways. \therefore Required number of arrangements $=2!6!=$ 1440 different ways.

EXERCISE-4

1 If, the SP is Rs.80, and the loss is 20%, then the CP has to be Rs. 100 .
2 Let s, a and d be the speeds at which Shyam,Arvind and Deepak can push the cart respectively. So we have $s+a=5$ and $a+d=6, a=3$. Thus $s+a+d=8$. Thus time taken $=1 \mathrm{hr} 15$ minutes.

Since C and D have different ages which are again different from that of A and B, and the difference between adjoining brothers is constant, we must have that the twins A and B should stand on either side of C or D, then the remaining one person will stand at an extreme end and one of the twins will stand at the other extreme end. Since A does not stand at the extreme, B must stand at one of the extremes.

7 Using alligation we get that the ratio in which the two types of sugars should be mixed is $3: 1$ i.e. $72: 24$. Thus 72 kgs should be mixed.
$8 \quad$ Let the speeds be $2 x$ and $3 x$. Thus relative speed is $5 x$. Since time taken is 10 seconds, the distance travelled i.e. the sum of lengths of both train is $50 x$. Thus length of each train is $25 x$. Now while passing the stationary train, the total distance travelled would be $500+25 x$ in time 25 sec i.e. $(500+25 x) / 3 x=$ 25. Simplifying we get $x=10$. Thus length of either train is $25 x$ i.e. 250 meters.

9 Using the formula we get that there is a loss in the overall transaction of $(15)^{2} / 100 \%=2.25 \%$.
10. The profit is zero implies CP is same as SP. Thus if initial SP was Rs.5, now it is $4=\mathrm{CP}$. Thus initial profit is Re 1 for Rs. 4 of CP i.e. 25%.
11. Let the work of $5 \times 12 \times 3$ units. Half of that is $5 \times 6 \times 30$.

Thus number of days taken $=5 \times 6 \times 30 /(15 \times 1 / 2 \times 12)=5$ Ans.a.
12. By formula $\theta=6(40-(11 \times 24) / 12)=108^{0}$
13.

John

Tough	Simple	Total
19 6	25	
Mutiply by 2 38		

Raymond

Tough	Simple	Total
47	3	50

So, $\%$ of tough questions in final paper is $(47+38)=85$
14. Suppose the income was 30 then 10 came from this salary, $1 / 5^{\text {th }}$ of the remaining 20 i.e. 4 came from working at week-ends. $1 / 2$ f the remaining i.e. $1 / 2$ of 16 i.e. 8 came from the royalty of his book. The remaining 8 from the investments which is thus twice of the pay of week-end work. He earns 1200 from weekend-work thus he earns 2400 from investments.
15. The relative speed when they are moving in same direction is 1 on the ratio scale and when they are moving in opposite directions, it is 5 . For constant distance, the speed is inversely proportional to time, therefore the required ratio is $5: 1$. Thus answer is c.
16. Let t min past 3 , the minute hand be 4 min behind the hour hand. Using the formula $t=(12 / 11)(m+x)$ or $(12 / 11)(m-x)$, substituting $m=15 \mathrm{~m}$. s. and x $=4 \mathrm{~m} . \mathrm{s}$., we get $\mathrm{t}=(12 / 11)(15-4)=12 \mathrm{~min}$. Ans. is c .
17. Ratio of the passengers is $1 / 21: 1 / 7: 1 / 3=1: 3: 7$
$11 \mathrm{a}=385 \Rightarrow \mathrm{a}=35, \therefore$ the number of I, II and III class passengers is $35: 105$: 245. Ans a.
18. Let x and y be the number of kgs of tea of rates Rs. 24 and Rs. 18 per kg respectively.

$$
\therefore 24 x+18 y=0.99(x+y) 20, \therefore 24 x / y+18=19.8(x / y+1) \Rightarrow x / y=3 / 7
$$

19. Let the speed of the man in still water be $\mathrm{m} \mathrm{km} / \mathrm{hr}$. and the speed of the current be s km/hr.
$3 / 4=(\mathrm{m}-\mathrm{s}) 45 / 4$ and $3 / 4=(\mathrm{m}+\mathrm{s}) 15 / 2$
$15 \mathrm{~m}-15 \mathrm{~s}=1$ and $10 \mathrm{~m}+10 \mathrm{~s}=1 \Rightarrow \mathrm{~m}=5 \mathrm{~km} / \mathrm{hr}$.
20. Let he invests Rs x in 5% stock and Rs y in 4% stocks.

On Rs. 132 he earns Rs.5. \therefore On Rs.x he can earn Rs. $5 x / 132$
Similarly, on Rs.y he can earn Rs.4y/99
$5 x / 132=4 y / 99 \Rightarrow x / 16=y / 15=(x+y) / 31=6200 / 31$
$x=$ Rs. 3200 and $y=$ Rs. 3000
21. Given that $\mathrm{mn}=100 . \therefore \mathrm{m}$ and n can be any of the following pairs 25,4 or 20,5 or 50,2 or 100,1 whose sum is 29 or 25 or 52 or 101 but there are no factors of 100 whose sum can be 50 .
22. Without leakage it can fill $1 / 3$ of the tank per hour and with leakage it can fill $2 / 7$ of the tank per hour \therefore leakage per hour $=(1 / 3-2 / 7)=1 / 21 . \therefore$ Time taken to drain all the water $=21$ hours
23. Ram lost a bicycle worth Rs. 300 + Rs. 50 given in cash to the tourist \therefore in all, he lost Rs. 350 .
24. In four weeks his earning by over time $=432-160 \times 2.4=48$.

Number of hours which he worked over time $=48 / 3.2=15 \therefore$ Total hours he worked $=175$.
25. $\quad \log _{10} \mathrm{e}+\log _{\mathrm{e}} 10=\log \mathrm{e} / \log 10+\log 10 / \log \mathrm{e}$. If $\log \mathrm{e} / \log 10=\mathrm{x}$, then the given expression can be written as $|x+1 / x|=(\sqrt{x}-1 / \sqrt{ })^{2}+2 \geq 0+2=2$. Hence the value of the given expression is always greater than 2 .
26. $\quad 2^{3015}=2^{3} .2^{3012}=8\left(2^{4}\right)^{753}=8(17-1)^{753}=8[17 \mathrm{k}-1]$

9 will be the remainder.
27. Profit drops by 5% which is equivalent to Rs.5. Thus 100% corresponds to Rs. 100 or the CP is Rs. 100.
28. Let the work be $9 \times 24 \times 8=1728$. Let the number of days required by 16 men be x. Then we have $16 x x 12=1728$. Thus $x=9$.
29. Suppose Rahul sells the berries at Rs. 30 per kg then Sunil sells it as Rs. 20 per kg . Since Rahul makes a profit of 20%, the CP of the berries will be Rs. 25 per kg . Thus Sunil has a loss of Rs. 5 for every Rs. 25 , thus the loss percentage is 20\%.
30. 177776 can be written as $2 * 88888$. Hence $5^{177776}=25^{88888}$. Since the power is same in both the cases. Expression with the greater base will be greater. Ans.b.
31. The relative speed is 4 kmph . Thus the dog will overtake the man by 4 km in one hour. Thus he can overtake 300 m in 4.5 minutes. Ans.b.
32. The two prices are $5 \& 11$. Mean price is 13 . You cannot mix the two quantities such as to make mean price 13, as the main price does not lie between the prices. Ans.d.
33. $\quad \mathrm{a}(1+20 / 100)^{\mathrm{T}}>2 \mathrm{a} \therefore(6 / 5)^{\mathrm{T}}>2$, which holds if $\mathrm{T}=4$ years.
34. Sequence of numbers which are divisible by 8 and lies between 900 and 1700 is $\{904,912, \ldots, 1696)$ which is an A.P. with first term 904, c.d. $=8$ and the last
term 1696. If there are n numbers between 900 and 1700 which are divisible by 8 ,then $1696=904+(\mathrm{n}-1) 8 \Rightarrow \mathrm{n}-1=99 \therefore \mathrm{n}=100$.
35. Let the person rides the bicycle for $\mathrm{x} \mathrm{km} . \therefore 8.5=\mathrm{x} / 12+(72-\mathrm{x}) / 4.5 \Rightarrow \mathrm{x}=54$ kms.
36. Let a be the volume of water in one litre of the mixture. \therefore a1000 + (1-a) 1350 $=1250 \Rightarrow 10=35 \mathrm{a} \Rightarrow \mathrm{a}=2 / 7 . \therefore \mathrm{b}=5 / 7$.
37. To strike 7, clock pendulum has to perform six oscillations for which it takes 7 seconds. To strike 10, pendulum has to perform 9 oscillations. For that it will take 9. $(7 / 6)$ seconds. $=10.5 \mathrm{sec}$.
38. P9-P8 = 999. . 9 (9 times)
$=9+90+900+\ldots+900000000$
$=9\left(1+10+\ldots \ldots+10^{8}\right)=10^{9}-1$
39. Average of $p+1$ numbers $=(p a+x) /(p+1)=b \Rightarrow x=b(p+1)-p a=p(b-a)+$ b.
40. Total no. of letters $=4+4^{2}+4^{3}+\ldots+4^{8}=4\left(4^{8}-1\right) /(4-1)=87380$

Total money spend $=(25 / 100) \times 87380=$ Rs 21845

EXERCISE - 5

1. Let he invests Rs. x and Rs.y respectively at 3% and 4% stocks. $\therefore x+\quad y=$ 2400 and
$3 x / 75+4 y / 96=97.5 \Rightarrow 24 x+25 y=97.5 \times 24 \times 25$. Solving these two equations we get $x=$ Rs. 1500 and $y=$ Rs. 900 .
2. In one hour it will travel 41 km without stoppage and with stoppages it covers 27 kms . \therefore It stops for the time in which it will travel a distance of 14 km with speed $41 \mathrm{~km} / \mathrm{hr}$.
\therefore time of stoppage $=(14 / 41) \times 60 \mathrm{~min}=20.5 \mathrm{~min}$.
3. Let the pipe A be turned off in t minutes. $\therefore(1 / 24) \mathrm{t}+16(1 / 32)=1 \Rightarrow \mathrm{t} / 24=1 / 2 \Rightarrow \mathrm{t}=12 . \therefore$ The first pipe A is to be turned off after 12 minutes.
4. Let $P=k-1, Q=k$ and $R=k+1 . \therefore P+Q+R=3 k$, which is even or odd depending on whether k is even or odd. Now $\mathrm{P}+2 \mathrm{Q}+\mathrm{R}=\mathrm{k}-1+2 \mathrm{k}+\mathrm{k}+1=$ 4 k , which is always even.
5. Since the distance is same and with different speeds he can save $12 \mathrm{~min}=$ $1 / 5 \mathrm{hrs}$.
$\therefore 2.5 \mathrm{t}=3.5(\mathrm{t}-1 / 5) \Rightarrow \mathrm{t}=7 / 10 \therefore \mathrm{~d}=2.5 \mathrm{x}(7 / 10)=7 / 4 \mathrm{~km}=13 / \mathrm{km}$.
6. Let the initial amount of sugar be x kgs and rate per kg be 5 r . Thus $5 \mathrm{rx}=50$ and $6 r(x-2)=50$. Thus solving we get $x=12$.
7. CP is 50 and loss is 10% i.e. 5 . Thus the SP is $50-5=45$. Ans.(c)
8. In one day the minute hand and the hour hand are at right angles 44 times. Therefore in a week they will be $44 \times 7=308$ times at right angle position. Ans.b.
9. Let l and w be the amounts of liquid and water in the mixture.
$\therefore(1.25)(15) \mathrm{l}=12.5(\mathrm{l}+\mathrm{w}) \Rightarrow 3(\mathrm{l})=2(\mathrm{l}+\mathrm{w}) \therefore \mathrm{w} / \mathrm{l}=3 / 2-1=1 / 2$
10. A, B and C's work per day is $1 / 90,1 / 40$ and $1 / 12$ respectively. Work done per cycle is
$1 / 90+1 / 40+1 / 12=43 / 360$ and to complete the work A, B and C each have to work for 9 days.(app) In 9 days A does $1 / 10^{\text {th }}$ and B does $9 / 40^{\text {th }}$ of the work. \therefore A's share $=1 / 10.240=$ Rs. 24 .
B's share $=9 / 40.240=$ Rs. $54 . \therefore$ C's share $=$ Rs. 162
11. Let the cost price of each article be Rs. x $\therefore(150 \times+50) \times 1.38=12.5 \times 90+10 \times 60=1725$.
$\therefore 150 \mathrm{x}+50=1250 \Rightarrow \mathrm{x}=$ Rs. 8 .
12. Length of the largest hurdle $=$ HCF of $15547,17647,3521$ which is 7.
13. The digits which shows some number when turned upside down are $0,1,6$, 9 and 8 . Of the choices 169 and 196 are the perfect squares containing these
digits but when turned upside down these shows 691 and 961 of which 961 $=31^{2}$ is the only perfect square.
14. Amount of water left in container $P=p-q / 3-r / 2=(6 p-2 q-3 r) / 6$
15. From the given data we get $\mathrm{a}+\mathrm{b}=29 \ldots$ (I) $\mathrm{b}+\mathrm{c}=29$..(II) $\mathrm{c}+\mathrm{d}=42$..(III) and d $+\mathrm{e}=37$. .(IV) From (I) and (II) $\mathrm{a}=\mathrm{c}$ and From III $\&$ IV $\mathrm{c}-\mathrm{e}=5$, adding I to IV we get $a+e+2(b+c+d)=137$
$\therefore a+e=35$ and $a-e=5 \Rightarrow a=20, b=9, c=20, d=22$ and $e=15$.
\Rightarrow Total Time $=20+9 / 3+20 / 5+22+15 / 5=52 \mathrm{~min}$
16. Let the number of students be x, therefore total age $=8 x$. Average of class including the teacher $=(8 x+28) /(x+1)=8.5$. Thus solving we get, $x=39$. Ans.d.
17. Bozo invests 20,000 in real estate, which becomes 21,000 after an increase of 5%, and he invests 5,000 in bullion, which becomes 6,000 after an increase of 20%. He has 40% of this amount after the stock crash, i.e., $2 / 5$ of $27,000=$ 10800. Ans.b.
18. Since the work done is same, $M_{1} T_{1} R_{1}=M_{2} T_{2} R_{2}$. Thus $24 \times 5 \times 2=5 \times 6 \times d$ where d is the number of days required. Solving we get $\mathrm{d}=8$. Ans.d.
19. When Runman runs 1000 m , Bhagatram runs 800 m . When Bhagatram runs 800 m, Padtabhau runs 600 m. So, when Runman runs 1000 m Padtabhau runs 600 m , thus he beats him by 400 m . Ans.c.
20. Alligating we get that the ratio in which acid and water should be mixed is 10:8 i.e. the amount of acid is $270=10 \times 27$. Thus amount of water should be $8 \times 27=216 \mathrm{ml}$. Ans.c.
21. The interests in the first year are the same for both CI and SI. The difference in the second year comes due to the excess interest on the first year's interest that is being charged in the CI deposit. Which means that 5% of 5% of $\mathrm{X}=$ 200 ; or, $X=200 \times 20 \times 20=80000$. Answer is c.
ALTERNATIVE:
Diff $=200$
$\mathrm{P}(1+5 / 100)^{2}-(\mathrm{P}+(\mathrm{P} \times 5 \times 2 / 100))=200$
$P=80,000$
22. Let the distance between two towns is $x \mathrm{~km}$ and it takes t hours with speed $40 \mathrm{~km} / \mathrm{hr} . \therefore$ with speed $30 \mathrm{~km} / \mathrm{hr}$ it will take $(\mathrm{t}+6 / 60) \mathrm{hrs} . \therefore \mathrm{x}=401=30$ $(t+1 / 10) \Rightarrow t=3 / 10$ and $x=12 \mathrm{kms}$.
23. If $x+y+z=0 \Rightarrow x+y=-z \therefore(x+y) /-z=-1 . \therefore$ If $(x+y) / z=1$ then $x+y+z$ is not equal to zero.
24. Resultant velocity $=12 \mathrm{~km} / \mathrm{hr}=10 / 3 \mathrm{~m} / \mathrm{sec}$., and total distance $=(60+84)=$ $144 \mathrm{~m} . \therefore$ total time required to fully cross it $=144 /(10 / 3)=43.2 \mathrm{sec}$.
25. LCM of 7,9 and 11 is $693 . \therefore$ In 693 the ratio of spirit to water in each glass is $297: 396,308: 385$ and $315: 378 . \therefore$ Ratio of spirit to water in the mixture is $(297+308+315):(396+385+378)$ i.e. $920: 1159$.
26. Since c is co-prime to a, there will not be any prime factor common in a and c and as c divides $a b$ it must divide b. i.e. c is a factor of b.
27. Let manufacturing cost of the item be Rs.x. \therefore (1.1) (1.2) (1.25) $\mathrm{x}=41.25 . \therefore \mathrm{x}$ $=$ Rs. 25 .
28. Required number of plants $=60 \mathrm{k}+1$, which is divisible by 7, and smallest of such numbers is 301 .
29. Number of boys $=(1089)^{1 / 2}=33$
30. $a / b=c / d=y / x \Rightarrow y / a=x / b$
31. $\mathrm{a}<\mathrm{b}<0 \Rightarrow-\mathrm{a}>-\mathrm{b}>0 \Rightarrow(-\mathrm{a}) /(-\mathrm{b})>1 \therefore \mathrm{a} / \mathrm{b}>1$.
32. Let weight of the body as obtained by the fourth experiment be x.
$\therefore 53.735=[(3)(54.005)+\mathrm{x}+\mathrm{x}-0.004+2(53.995)] / 7 \Rightarrow \mathrm{x}=53.072$.
33. Let b, n and p respectively be the number of books, note books and pencils. $\therefore \mathrm{b} / \mathrm{n}=\mathrm{n} / \mathrm{p} \therefore \mathrm{n}^{2}=\mathrm{bp}=100 . \therefore \mathrm{n}=10$.
34. $\mathrm{m}+\mathrm{n}=0 \Rightarrow \mathrm{~m}=-\mathrm{n} . \therefore 1 / \mathrm{m}+1 / \mathrm{n}=1 / \mathrm{m}-1 / \mathrm{m}$ will be equal to zero if m is well defined non zero number, but $1 / \mathrm{m}-1 / \mathrm{n} \neq 0 \Rightarrow \mathrm{~m}=0 . \therefore \mathrm{n}=0$, hence m $=\mathrm{n}$.
35. Let the original price be Rs.10x per kg. After reduction by 10%, the price will now be 9x. So that Shyam can buy 1800/9x $=200 /$ x kg rice. Thus $1800 / 10 x+$ $10=200 / x$. Thus solving we get $x=2$. Thus original price is Rs. 20 per kg and one can buy 90 kg rice in Rs.1800. Now if the price increases by 12.5% i.e. becomes Rs. 22.5 per kg, one can buy 1800/22.5 = 80 kg . Thus Shyam buys 10 kg less. Ans.b.
36. Let the sums be x and $2 x$. Then interest earned will be $(x x 5 x 2) / 100+$ $(2 x x 8 \times 2) / 100=420$. Thus solving we get $x=1000$. But total sum is $3 x$ i.e.Rs.3000.Ans.b.
37. In 2 litre mixture, 0.2 litre water is present. Let the amount of water added be x litres. Now the total volume of mixture is $2+x$ of which water is 20%. Thus we have $20(2+x) / 100=x+0.200$. Solving we get $x=0.25$ litres. Thus Ans.a.
38. We have to find the minimum number which when divided by 14,11 and 12 gives the same remainder 5 . This is given by $\mathrm{N}=\operatorname{LCM}(14,11,12) \times n+5$. For $\mathrm{n}=1$, we will get the minimum number. Thus $\mathrm{N}=929$. Then total cows that are given to Brahmins are 929-5 $=924$. Thus the no of cows each Brahmin gets is $924 / 11=84$. Ans.d.
39. The speed ratios are : $X: Y=1: 2$, and $X: Z=3: 4$. This gives the speed ratio $Y: Z$ as 3:2. Therefore, the time ratio would be the inverse; $Y: Z=2: 3$. Now, if Y takes 10 hrs, Z will take $3 / 2$ times that much i.e., 15 hrs . Answer is a.
40. Since he uses equal amounts of two kinds of petrol his cost per gallon $=35$ ps. Hence in Rs. 350 he will get 10 gallons of petrol. \therefore total distance traveled $=15 \times 10=150$ miles.

EXERCISE-6

1. (A) $\frac{x}{a}=\mathrm{b}-\mathrm{c}$
$\frac{y}{b}=c-a$
$\frac{z}{c}=a-b$
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$
Let $\frac{x}{a}, \frac{y}{b}$ and $\frac{z}{c} \quad$ be A, B and C
$\mathrm{A}+\mathrm{B}+\mathrm{C}=0$

$$
\mathrm{A}^{3}+\mathrm{B}^{3}+\mathrm{C}^{3}=3 \mathrm{ABC}
$$

2. Only $x=1$ and $y=1$ therefore, the
3.. Given equation can be written as $-3<(11-x) / 2<3=>-6<11-x<6$ i.e. -$17<-x<-5$ i.e. $5<x<17$.
3. Let the length of rectangle be X m and breadth of the rectangle $=\mathrm{Y} \mathrm{m}$. Area $=X Y$ sq. m .
ICase:
Length $=(X+9) \mathrm{m}$ and breadth $=(Y-5) \mathrm{m}$
Area $=(X+9)(Y-5)$ sq. $m . \Rightarrow(X+9)(Y-5)=X Y$
Or $-5 \mathrm{X}+9 \mathrm{Y}-45=0$
IICase:
Length $=(X-7) \mathrm{m}$ and breadth $=(Y+5) \mathrm{m} \Rightarrow(X-7)(Y+5)=X Y$
Or $5 \mathrm{X}-7 \mathrm{Y}-35=0$ \qquad
Hence length $=63 \mathrm{~m}$ and breadth $=40 \mathrm{~m}$. Ans. B)
Note: Assume $L=63$ and $B=40$ as an option and try checking the conditions
given in the problem. You will see that working backward is exceptionally fast in such cases.
4. Given that $|x|^{2}+5|x|+4=0$

Case I: if $x \geq 0$ then $|x|=x . \therefore x^{2}+5 x+4=0$
$(\mathrm{x}+1)(\mathrm{x}+4)=0=>\mathrm{x}=-1,-4(<0)$ Thus there is no solution of the equation when $x \geq 0$
Case II: If $x<0$, then $|x|=-x . \therefore$ the equation is $\mathrm{x}^{2}-5 \mathrm{x}+4=0 \Rightarrow(\mathrm{x}-1)(\mathrm{x}-4)$ $=0=>\mathrm{x}=1,4(>0)$. Thus there is no solution of the equation when $x \leq 0$.
6. $|x|=y+5$

When $x<0,-x=y+5$ or $x+y+5=0$
When $x>0, x=y+5$ or $x-y-5=0$
7. (C) Put the value of $a=1, b=0$.
8. p^{2} is odd, $(q-r)$ is even and r is odd
$\therefore \mathrm{p}^{2}+(\mathrm{q}-\mathrm{r}) \mathrm{r}=$ odd + even $=$ odd number
9. a, b and c are in GP
$\Rightarrow \mathrm{b}^{2}=\mathrm{ac}$, taking \log on both sides
$\log _{\mathrm{n}} \mathrm{b}^{2}=\log _{\mathrm{n}} \mathrm{ac}$
$2 \log _{n} b=\log _{n} a+\log _{n} c i e$
$\frac{2}{\log _{b} n}=\frac{1}{\log _{a} n}+\frac{1}{\log _{c} n}$
This shows that
$\log _{a} n, \log _{b} n \& \log _{c} n$ are in HP .
10. $x=\frac{\sqrt{3}+1}{2} \Rightarrow(2 x-1)^{2}=3$ or $4 x^{2}-4 x-2=0$ or $2 x^{2}-2 x-1=0$.

Now, $4 \mathrm{x}^{3}+2 \mathrm{x}^{2}-8 \mathrm{x}+7=\left(2 \mathrm{x}^{2}-2 \mathrm{x}-1\right)(2 \mathrm{x}+3)+10$. Since $2 \mathrm{x}^{2}-2 \mathrm{x}-1$ is zero, the given expression $4 x^{3}+2 x^{2}-8 x+7=10$ when $x=\frac{\sqrt{3}+1}{2}$.
11. multiply equation (1) with a and subtract from (2)
$x=0$ and $y=2$
12. roots of equation are real. Use Discriminant.
13. $c 2 x+5 y=12 \ldots(1)$ and $(x+y)=3 \ldots$...(2). Solving the two equations, $2 x+5 y=$ 12 and $2 x+2 y=6$, we get $3 y=6 ; y=2$ and substituting in (2) we get $x=1$. Hence the solution is $(1,2)$.
14. Multiply the given equation with 4.
15. (d) $1 / x=4-1 / 3-1 / 2(24-2-3) / 6=19 / 6$. Hence $x=6 / 19$
16. (b) First of all arrange the given equation
$\frac{x^{3}-a b c+(a b-b c-c a) x+(a+b-c) x^{2}}{(a-c) x+x^{2}-a c}$
$\frac{(x+a)(x+b)(x-c)}{(x+a)(x-c)}=(x+b)$
Alternate: Put $x=2, a=3, b=4, c=5$ and check with the options
17. (a) The equation is $R\left[R^{2}+3 R+3\right]$

Add and subtract $1 \Rightarrow R^{3}+1+3 R^{2}+3 R-1 \Rightarrow(R+1)^{3}-1$
Now put $R=99$ i.e.. $(99+1)^{3}-1=(100)^{3}-1=999999$
18. (b) $3^{x}-3^{x-1}=486$ or $3^{x-1+1}-3^{x-1}=486$
$3^{x-1}[3-1]=486$ or $3^{x-1} \times 2=486$ or $3^{x-1}=243=3^{5}$ or $x=6$
19. Use options
20. $\quad x^{2}+4 x y+4 y^{2}=(x+2 y)^{2}$

This takes a minimum value when $x+2 y=0$ or $x=-2 y$
21. $3^{\text {rd }}$ term $=a+2 d, 9^{\text {th }}$ term $=a+8 d$
$a+2 d=10, a+8 d=20 \Rightarrow 2 a+10 d=30$
sum of terms $=\frac{11}{2} \quad(2 a+10 d)=\frac{11}{2}(30)$
$=165$
22. Both equations are the same.
23. $* 5=5^{2}-2=23 ; * 23=23^{2}-2=529-2=527$
24. d Since $\sqrt{8 \times 2}=\sqrt{16}= \pm 4$ which shows that \mathbf{a} and \mathbf{b} need not be perfect squares but c can be a perfect square. In the given eg., $c=-4$, hence c need not be greater than zero.
25. $\therefore \mathrm{dP} / \mathrm{dx}=3 \mathrm{x}^{2}-12 \mathrm{x}+12=0$ or $\mathrm{x}^{2}-4 \mathrm{x}+4=0$ or $\mathrm{x}=2$
\therefore The firm should produce 2 units.
26. $\mathrm{x}^{2}+(\mathrm{k}+1) \mathrm{x}+8=0$

If the roots are imaginary, then
$(\mathrm{k}+1)^{2}-4 \times 8<0$ or $(\mathrm{k}+1)^{2}-4(\sqrt{ } 2)^{2}<0$
\therefore The value of k lies between
$-(4 \sqrt{ } 2+1)$ and $(4 \sqrt{ } 2-1)$ excluding the extremes.
27. $\mathrm{F}=$ age of father. Then $1 / 3(\mathrm{~F}+19)=1 / 5(\mathrm{~F}+57)$ or $2 \mathrm{~F}=76 ; \mathrm{F}=38$.
28. c Rohit's age after 10 years $=8+3+10=21$, Tabu's father's age after 10 years $=42+12=54$ years
\Rightarrow His present age $=42$ years \Rightarrow Tabu's age $=14$ years
29. least value $=1+1=2$
30. Using laws of indices, the answer is 32
31. $\log _{5} 64=x$ i.e. $5^{x}=64=8^{2}$. Thus $5^{x / 2}=8$. Therefore, $\log _{5} 8=x / 2$.
32. Let cost of an apple and an orange be a and b respectively and x and y be the number of apples and the oranges respectively. $\therefore a x+b y=17$ \ldots..(I) and $b x+a y=15 \ldots$ (II). Adding (I) \& (II) we get $(a+b)(x+y)=32$ and $x+y=40 \Rightarrow a+b=$ Rs. $0.80=80$ paise.
33. Sol. $\log _{2} x^{2}+\log _{x} 2=3$

$$
\text { or } 2 / \log _{x} 2+\log _{x} 2=3
$$

$$
\text { or }\left(\log _{x} 2\right)^{2}-3\left(\log _{x} 2\right)+2=0
$$

Put $y=\log _{x} 2$
$\therefore y^{2}-3 y+2=0$
or $y=1,2$
For $y=1, \log _{x} 2=1$ or $x=2$
For $y=2, \log _{x} 2=2$ or $x= \pm \sqrt{ } 2$.
Since the value of base can't be negative, then there are only two valid values of $x: 2$ and $\sqrt{2}$.
34. The question involves simple theorem that. $a!b!$, such that $a+b=$ constant, is minimum and $a=b$ if $a+b=$ even.
35. If we put $x=0$, we will get $y=2$, so answer option a and d, ruled out. $y=3$ is not possible from the given expression.
36. Take each answer option and check for values of a in the given range. Only answer option d satisfies.
37. $\alpha+\beta=1, \alpha \beta=1 / 6$
$1 /\left(a+b \alpha+c \alpha^{2}+d \alpha^{3}\right)+1 /\left(2 a+b \beta+c \beta^{2}+\beta^{3}\right)$
$\left.=1 / 2 a+b(\alpha+\beta)+c\left(\alpha^{2}+\beta^{2}\right)+d\left(\alpha^{3}+\beta^{3}\right)\right]$
$=1 / 42 a+b \cdot 1+c\{1-2 / 6\}+d\{1-3 / 6\}]$
$=1+b / 2+c / 3+d / 4$
38. Let $\log x=y$, then the given equation becomes $y^{2}-5 y+6=0$.
$\therefore y=2$ or $y=3$. Hence $\log x=2$ or $\log x=3 . \therefore x=e^{2}$ or $x=e^{3}$
39. $1, \omega, \omega^{2}$ are three cube roots of unity,
$\therefore \omega^{3}=1$ and $1+\omega+\omega^{2}=0$
$1-\omega+\omega^{2}=-2 \omega$
$1-\omega^{2}+\omega^{4}=1-\omega^{2}+\omega=-2 \omega^{2}$
$1-\omega^{4}+\omega^{8}=1-\omega+\omega^{2}=-2 \omega$. Thus each of the two consecutive terms pair up to give $4 \omega^{3}=4$. For $n / 2$ terms we have, 4. 4. $4 \ldots \ldots=4^{n / 2}=2^{n}$
40. Minimum possible value of any expression inside mode is zero, so we will check for $x=3,-2$, and $x=5$. At $x=3$ we will get minimum value, which is 7 .

EXERCISE - 7

1. Put $e^{\operatorname{sinx}}=y$; the equation becomes $y-1 / y-4=0$ or $y^{2}-4 y-1=0$ $y=(4 \pm \sqrt{ }(16+4)) / 2=2 \pm \sqrt{ } 5$
$\mathrm{e}^{\sin x}$ cannot be negative , so only one value of x possible
2. Given expression is $\left.\left\{[\sqrt{ } 2+1)^{2}-(\sqrt{ } 2-1)^{2}\right] / 2(2-1)\right\}^{1 / 3}[4 \sqrt{ } 2 / 2]^{1 / 3}=\left[(\sqrt{ } 2)^{3}\right]^{1 / 3}=$ $\sqrt{ } 2$.
3. Sol. (a)Since $3^{2}=9$ and $0^{2}=0$. The digit in the unit place of the sum must be 9 therefore the digit in the square root is 3 or 7 . The sum of the squares of the digits at thousands place ≥ 32 and $\leq 50 \therefore$ Ans. 6467 .
4. Sol. (a)Let $S=1^{2}+2^{2} / 2!+3^{2} /(2!)^{2}+4^{2} /(2!)^{3}+5^{2} /(2!)^{4}+\ldots$. (1)

Put $1 / 2=\mathrm{x}$
$\therefore \mathrm{S}=1+4 \mathrm{x}+9 \mathrm{x}^{2}+16 \mathrm{x}^{3}+\ldots \ldots \ldots$ (2)
Multiply (2) with x
$\therefore \mathrm{xS}=\mathrm{x}+4 \mathrm{x}^{2}+9 \mathrm{x}^{3}+\ldots$.
Subtracting (3) from (2) we get
(1-x) $S=1+3 x+5 x^{2}+7 x^{3}+\ldots \ldots .(4$
Multiply (4) with x
$x(1-x) S=x+3 x^{2}+5 x^{3}+7 x^{4}+$
Subtracting (5) from (4) we get
$(1-x)^{2} S=1+2 x+2 x^{2}+2 x^{3}+\ldots$.
$=1+2 x /(1-x)=(1+x) /(1-x)$
or $S=(1+x) /(1-x)$
Put $\mathrm{x}=1 / 2$
$\mathrm{S}=\left(1+1 / 2 /(1-1 / 2)^{3}\right.$
$=\frac{3 / 2}{1 / 8}=12$
5. Sol. Let $a=x /(x-1)$ and $b=x$

Then $a+b=x /(x-1)+x=\left(x+x^{2}-x\right) /(x-1)=x^{2} /(x-1)$
Thus the given equation becomes $|a|+|b|=|a+b|$
But this hold if and only if $a b \geq 0$ i.e. if and only if $x^{2} /(x-1) \geq 0$ i.e. if $x \varepsilon(0) U$ $(1, \propto)$
6. As product of terms equidistant from the centre is constant, $g_{1} g_{2 n+1}=g_{2} g_{2 n}=. .=g_{n+1}, g_{n+1}=g_{n+1}^{2}=2500$.
7. The equation $3 x^{2}+2\left(a^{2}+1\right) x+\left(a^{2}-3 a+2\right)=0$ will have two roots of opposite sign if it has real roots and the product of the roots is negative, that is,
If $4\left(a^{2}+1\right)^{2}-12\left(a^{2}-3 a+2\right) \geq 0$ and $\left(a^{2}-3 a+2\right) / 3<0$
Both of these conditions are met if
$a^{2}-3 a+2<0$ i.e. if $(a-1)(a-2)<0$ or $1<a<2$
8. $\quad f(23)$ is the remainder when $f(x)$ is divided by $x-23$. Using Vedic Maths method of division,

23	1	-25	49	-73	87	113	54
	23	-46	69	-92	-115	-46	
1	-2	3	-4	-5	-2	8	

Therefore, remainder is 8 , which is $f(23)$.

9 We can see from the data, that the man walks in all 5 km to the south and 12 km to the west, thus forming a right angled triangle of sides 5 and 12. So the shortest distance is 13 km .
10. $4^{x-5+b}=2^{a+b} \times 2^{b} \times 2^{a-4}-63$
$4^{(a+(b)-5}=2^{2(a+(b)-4}-63$
$4^{(a+(b)-5}-4^{(a+(b)-2}=-63$
$4^{(a+b)}-2\left[4^{-3}-1\right]=-63$
$4^{(a+(b)-2}[1 / 64-1]=-63$
$4^{(a+(b)-2}[-63 / 64]=-63 \Rightarrow 4^{(a+(b)-2}=64=(4)^{3}$
or, $a+(b)-2=3$ Therefore, $a+(b)=5$
11. For all positive numbers,
$\mathrm{AM} \geq \mathrm{GM} \geq \mathrm{HM}$
Equality holds good when numbers are equal. Here they are unequal.
Hence $\frac{(a+b)}{2}>\sqrt{a b}>\frac{2 a b}{a+b}$
12. $\mathrm{L}(3.1)-\mathrm{H}(6.1)=3-7=-4, \mathrm{H}(-4)=-4$
$\mathrm{H}(7.3)-\mathrm{L}(1.9)=8-1=7, \mathrm{~L}(7)=7 \Rightarrow \mathrm{~A}[-4,7]=1.5 \quad$ Ans. A
13. $\because \frac{1}{\mathrm{x}^{2}-1}=\frac{1}{\mathrm{x}(\mathrm{x}-1)}=\frac{1}{(\mathrm{x}-1)}-\frac{1}{\mathrm{x}}$;
$\therefore \frac{1}{100^{2}-100}+\frac{1}{101^{2}-101}+\ldots \ldots \ldots \ldots+\frac{1}{(9999)^{2}-9999}$
$=\left(\frac{1}{99}-\frac{1}{100}\right)+\left(\frac{1}{100}-\frac{1}{101}\right)+\left(\frac{1}{101}-\frac{1}{102}\right)+\ldots \ldots \ldots \ldots . .+\left(\frac{1}{9998}-\frac{1}{9999}\right)$
$=\frac{1}{99}-\frac{1}{9999}=\frac{100}{9999}$
14. We have $((1-a) / a)((1-b) / c)((1-c) / c)=[1-(a+b+c)+b c+c a+a b-a b c] / a b c$ $1 / a+1 / b+1 / c-1 \quad[a s a+b+c=1]$
But since $\mathrm{AM} \geq \mathrm{HM}$
$1 / 3(1 / a+1 / b+1 / c) \geq 3 /(a+b+c)=3$
we get $1 / a+1 / b+1 / c \geq 9$
Thus ((1-a)/a)((1-b)/c((1-c)/c) $\geq 9-1=8$
15. \quad The nth term $=(a-n)+i(b-n)$

If the term is real, $(b-n)=0, b=n$
16. At $\mathrm{n}=1$, we get the first term as $\mathrm{a}+\mathrm{b}$. At $\mathrm{n}=2$, we get the sum of first two terms as $2 a+4 b$. Hence the common difference $=(2 a+4 b)-2(a+b)=2 b$.
17. Since a, c and b are in $\mathrm{HP}, \mathrm{c}=2 \mathrm{ab} /(\mathrm{a}+\mathrm{b})=2 \mathrm{ab} / 2=\mathrm{ab}$. Geometricmean of a and b is $\sqrt{ }(a b)$. Thus geometric mean of a, b is $\sqrt{ }$ c. Ans.a.
18. Let the nos. be $a-2 d, a-d, a, a+d, a+2 d$ which are same $a s a / r^{2}, a / r, a, a r$, ar^{2}. Solving these we get that $\mathrm{r}=1$ and $\mathrm{d}=0$. Which means that the progression is constant or each term is equal to a. Thus Ans.c.
19. simply plug in options or take $6 x^{2}-5 x$ as y and solve $(y+11)+(y-25)=12, y+11=12-(y-25)$
squaring both sides, $24(y-25)=108,(y-25)=9 / 2$
squaring both sides, $\mathrm{y}=181 / 4$
20. Let speed of the escalator be x steps per second. \therefore In 30 second the escalator will come down by 30 x steps and in 18 seconds it will come down by 18 x steps. Since height of the stair way is same $26+30(x)=34+18(x) \therefore x=2 / 3$. \therefore height of the stair way $=26+30(2 / 3)=46$ steps.
21. $2 / 9,1 / 42 / 7,1 / 3 \ldots$.

This is an H.P. series. The corresponding AP will be 9/2, 4/1, 7/2, 3/1,
or $4.5,4,3.5,3 \ldots$.
i.e. this is an AP with first term 4.5 and common difference -0.5 .

Hence, $\mathrm{T}_{11}=4.5+10(-0.5)=-0.5$
The corresponding T_{11} H.P. is $1 /(-0.5)=-2$
22. a, b, c are in $A P$, so $2 b=a+c \Rightarrow 4 b^{2}=a^{2}+c^{2}+2 a c$
$\Rightarrow 4 \mathrm{~b}^{2}-4 \mathrm{ac}=\mathrm{a}^{2}+\mathrm{c}^{2}+2 \mathrm{ac}-4 \mathrm{ac} \rightarrow 4\left(\mathrm{~b}^{2}-\mathrm{ac}\right)=(\mathrm{a}-\mathrm{c})^{2}$
Discriminant of given equation is $4\left(b^{2}-a c\right)=(a-c)^{2}>0$
Therefore answer will be d.
23.
$y+x^{3}+x y=y^{3}+y^{2}+x \Rightarrow y^{3}-x^{3}+y^{2}-x y+x-y=0 \Rightarrow(y-x)\left(y^{2}+x y+x^{2}\right.$ $+y-1)=0 \Rightarrow x=y \therefore x^{2}=y^{2}$.
24. The fraction can be written as $\mathrm{F}=(4+\mathrm{c})(2+\mathrm{c}) /(5+\mathrm{c})$

Put $5+\mathrm{c}=\mathrm{t}$ or $\mathrm{c}=\mathrm{t}-5$
$\therefore F=(t-3)(t-1) / t=\left(t^{2}-r t+3\right) / t$
$=\left(t^{2}-4 t+4-1\right) / t=(t-2)^{2} / t-1 / t$
Hence, the given expression is minimum, if the square term is zero
$\therefore(\mathrm{t}-2) / \mathrm{t}=0$ or $\mathrm{t}=2$
25. Let a boy has x brothers and x sisters. \therefore Number of the children in the family $=2 x+1 . \therefore$ A girl in the family has $(x-1)$ sisters. \therefore Number of her brothers $=2(x-1)$. Hence total number of children in the family $=3(x-1)+$
$1=3 x-2 . \therefore 3 x-2=2 x+1 \Rightarrow x=3$. Total number of boys in the family $=4$ and total number of girls in the family $=3$.
26. $\alpha+\beta=\left(1 / \alpha^{2}\right)+\left(1 / \beta^{2}\right)=\left(\alpha^{2}+\beta^{2}\right) / \alpha^{2} \beta^{2}=\left[(\alpha+\beta)^{2}-2 \alpha \beta\right] /{ }^{2} \beta^{2}$
$-b / a=\left[\left(b^{2} / a^{2}\right)-2 c / a\right] /\left(c^{2} / a^{2}\right)=\left(b^{2}-2 a c\right) / c^{2}$
$2 a / c=b^{2} / c^{2}+b / a=a b^{2}+c^{2} / a c^{2}$
$2 \mathrm{a}^{2} \mathrm{c}=\mathrm{ab}^{2}=\mathrm{bc}^{2} ; 2 \mathrm{a} / \mathrm{b}=\mathrm{b} / \mathrm{c}+\mathrm{c} / \mathrm{a}$ [dividing by abc]
$c / a, a / b, b / c$ are in A.P.; $a / c, b / a, c / b$ are in H.P.
27. Given that $x y+y z+z x=5$. Since $(x-y)^{2} \geq 0 \Rightarrow x^{2}+y^{2} \geq 2 x y$. Similarly we get $x^{2}+z^{2} \geq 2 x z$ and $z^{2}+y^{2} \geq 2 z y$, adding them we get $x^{2}+y^{2}+z^{2} \geq x y+y z$ $+z x=5,(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)$. As x, y and z are sides of a triangle satisfying $x y+y z+z x=5$; Maximum value of $x+y+z$ is 5 . Using this inequation, we get $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 15$.
$\therefore 5 \leq \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \leq 15$.
28. $99 \# 1 / 99=(99 \times 1 / 99)+[1 /(99 \times 1 / 99)[=1+1=2$. Similarly $1 / \# 2=1+1=2$.
29. $c \# \# d=(c+1 / c)(d+1 / d)=c d+c / d+d / c+1 / c d=(c d+1 / c d)+[c / d+$ $1 /(\mathrm{c} / \mathrm{d})]=(\mathrm{c} \# \mathrm{~d})+(\mathrm{c} \# 1 / \mathrm{d})$.
30. Number of pounds of oranges will be maximum if it's cost is minimum i.e. $15 \mathrm{ps} /$ pound. In the case number of pounds of the oranges $=500 / 15=33.33$. Hence required answer $=33$.
31. The two speeds are 500 and 200 , and the mean speed is $1200 / 3=400$. On alligation, the time ratio comes to $2: 1$, that is, 2 hrs at 500 and 1 hr at 200. So, he travels for two hrs at $500 \mathrm{~km} / \mathrm{hr}$ to reach Rome from Pairs, which makes that distance 1000 km .
32. Suppose that initially Manu takes $6 x$ toffees from the jar. Then he puts back $3 x$ of them in jar and he admits to have taken only $2 x$. Thus there should have been $4 x$ toffees in the jar but there are only $3 x$ toffees. Thus $x=5$. Thus initially Manu took $6 x=30$ toffees.
33. $\quad \cos (\log x)=3^{2 x}+3^{-2 x}$
$=\left(3^{x}\right)^{2}+\left(3^{-x}\right)^{2}-2 \cdot 3^{x} \cdot 3^{-x}+2$
$=\left(3^{x}+3^{-x}\right)^{2}+2$
≥ 2. hence, no soln exist since value of cos lies between +1 and -1
$\mathrm{T}_{2 \mathrm{r}+1}={ }^{15} \mathrm{C}_{2 \mathrm{r}} \cdot 1^{15-2 \mathrm{r}}(\mathrm{x})^{2 \mathrm{r}}$
$\mathrm{T}_{\mathrm{r}-2}={ }^{15} \mathrm{C}_{\mathrm{r}-3} \cdot 1^{18-4}(\mathrm{x})^{\mathrm{r}-4}$
Given that the coefficients of these are equal.
$\therefore{ }^{15} \mathrm{C}_{2 \mathrm{r}}={ }^{15} \mathrm{C}_{\mathrm{r}-3}$
Either $2 r=r-3$ or $2 r+r-3=15$
$r=-3 \quad$ or $\quad r=6$

Accepting the + ve value of r.
$\mathrm{T}_{6}={ }^{15} \mathrm{C}_{5} 1^{10} \mathrm{x}{ }^{5}={ }^{15} \mathrm{C}_{5} \mathrm{x}$
35. If $\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{3}=\mathrm{k}$ (constant), the value of $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \mathrm{a}_{\mathrm{n}}$ is greatest when $a_{1}=a_{2}=\ldots=a_{n}$
So that the greatest value of $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} . . \mathrm{a}_{\mathrm{n}}$ is $[k / n]^{\mathrm{n}}$
Given $y z+z x+x y=12$ (constant), the value will be greatest when $y z=z x=$ xy
$\therefore \mathrm{yz}=\mathrm{zx}=\mathrm{xy}=4$
So greatest value of $(\mathrm{yz})(\mathrm{zx})(\mathrm{xy})$ is 4.4.4.
Hence greatest value of $x y z$ is 8
36. $x \geq 0 ; \sqrt{ }(x+3) \geq \sqrt{ } 3>1$, so the value of expression will be more than 1 , so no solution is possible.
37. i). $7^{7}>1.3 .5 .7 .9 \ldots .13$
this is in the form of $n^{n}>1.3 .5 \ldots(2 n-1)$; substitute small values of n and see this is always true.
ii). $2^{\mathrm{n}}>1+\mathrm{n} \sqrt{ } 2^{\mathrm{n}-1}$
check by substituting the values of n
iii). $1 /(7+1)+1 /(7+2)+\ldots+1 /(2.7)>1 / 2$

Now $1 /(n+r)>1 / n(2 n)$ for $r=1,2,3, \ldots . .(n-1)$. Therefore
$1 /(n+1)+1 /(n+2)+. .+1 /(n+n)>1 /(2 n)+1 /(2 n)+. .+1 /(2 n)(n$ times $)=$ $n /(2 n)=1 / 2$
38. For such problems we can substitute the values of n

Put $\mathrm{n}=1$, then Sum of one term of series is $(2 \mathrm{n}-1)=1$, put $\mathrm{n}=2$
Then sum of two terms of series is $(2 n-1)+2(2 n-3)=5$.
When we put $\mathrm{n}=1$ and 2 in option b , we will get $1 \& 5$ respectively. So answer will be b
39. $(a+1 / a)^{2}=3$ or $(a+1 / a)=3^{1 / 2}$ and $(a+1 / a)^{3}=a^{3}+1 / a^{3}+3(a+1 / a) \Rightarrow\left(a^{3}+\right.$ $\left.1 / a^{3}\right)=3 \sqrt{ } 3-3 / 3=0$
40. $x / y=\left(a_{2}+a_{4}+\ldots \ldots+a_{400}\right) /\left(a_{3}+a_{5}+\ldots .+a \quad 401\right)$
$=\left(\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots . .+\mathrm{a}_{400}\right) /\left\{\mathrm{r}\left(\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots .+\mathrm{a}_{400}\right)\right\}$
$y / x=r$

EXERCISE - 8

For Q1- Q4
Let x be the number of students playing all the games.
\therefore Number of students playing only cricket $=20-(15-x)-x-(10-x)=x-5$
Number of students playing only football $=25-(15-x)-x-(12-x)=x-2$
Number of students playing only TT $=18-(10-x)-x-(12-x)=x-4$
$\therefore(x-5)+(15-x)+(x-2)+(10-x)+(12-x)+(x-4)=33$
$\therefore \mathrm{x}=7$. Hence,

1. c
2. b
3. a
4. c
5.

OQCS and APOR are also rectangles. The diagonal OC divides the area into equal halves. Therefore, area of OQC = area of OSC. Similarly, area of APO $=$ area of ARO. Since $A B C D$ is a rectangle and diagonal $A C$ divides it into equal areas, Area of $A D C=$ area of $A B C$. Therefore, area $1=$ area 2 , no matter where is the point O located.
6.

Radius of the outermost circle, let us say, is r and the side of the largest triangle (which will be equilateral) that can be inscribed in it is a. Then,
$\mathrm{r}=\left(\frac{2}{3}\right) \frac{\sqrt{3}}{2} \mathrm{a}=\frac{\mathrm{a}}{\sqrt{3}}$ or $\mathrm{a}=\mathrm{r} \sqrt{3}$. Therefore, area of the triangle
$=\frac{\sqrt{3}}{4} a^{2}=\frac{3 \sqrt{3}}{4} r^{2}=\frac{3 \sqrt{3}}{4}$. Therefore, $r=1 \mathrm{~cm}$.
Let the radius of the inner circles be r_{1}, r_{2}, r_{3} and r_{4}. Then,
$2 r_{1}+2 r_{2}+2 r_{3}+2 r_{4}=2 r$ or $r_{1}+r_{2}+r_{3}+r_{4}=1$.
Total circumference of all the 5 circles $=2 \pi\left(r_{1}+r_{2}+r_{3}+r_{4}+r\right)=4 \pi$
7.

Qn 6
Unshaded area, x inside the square
$=\frac{1}{2}$ (area of square - areas of 2 vertically opposite quarter circles)
$=\frac{1}{2}\left(100-2 \times \frac{\pi(5 \sqrt{2})^{2}}{4}\right)$
Required area $=($ area of square $-4 x)=50 \pi-100$.
8. It is quite obvious $\mathrm{p}-\mathrm{q}=\mathrm{PQ}$

Radius of the smallest quarter circle is 2 cm . Therefore, its length $=$ $\frac{2 \pi r}{4}=\pi$.The radius of next level quarter circle is $2+2=4 \mathrm{~cm}$, the next level radius $=2+4=6$, etc. Therefore, radii of the quarter circles starting with the smallest one are $2,4,6,8,10$ and 12 .
Total length of the curve $=\frac{2 \pi}{4}(2+4+6+8+10+12)=21 \pi$.
10. The total no. of arrangements in which the letters of the word SUNRISE can be arranged are $7!/ 2$!. The no. of arrangements in which the vowels are always together are $5!/ 2$!.
Hence, the no. of ways in which they are never together are $7!/ 2!$. $-5!/ 2$!. But these arrangements include the arrangement SUNRISE hence we need to subtract this one.
11. The smallest radius means the smallest circumference. The circumference is $2 \pi r$. With six points equidistant with distance between them to be integer, this integer has to be the smallest, i.e., 1 . Therefore, circumference is 6 units. Therefore, $2 \pi r=6$ or $r=3 / \pi$.
12. The height of the cliff will be 200 m . The side opposite to the 30° angle will be $200 \sqrt{ } 3$. Thus the height of the tower will be $200-200 \sqrt{ } 3$.
$132 / 3^{\text {rd }}$ of the post is initially filled with water therefore the total volume of the pebbles is equal to $1 / 3^{\text {rd }}$ of the volume of the pot. Thus if r is the radius of the pot then $1 / 3 \times 4 \pi r^{3} / 3=576 \times 4 / 3 \Pi R^{3}$. Subtituting $R=1$, we get $r=12$. Thus answer a.
14. Since area of circle with $B C$ as radius is 154 sqcm., $\Pi(B C)^{2}=154$, so, $B C=7$ cm . Triangles ABC and ADE are similar triangles. Therefore, $\mathrm{AB} / \mathrm{AD}=$ $\mathrm{BC} / \mathrm{DE}$. As $\mathrm{BC}=7$ and DE is $14 \mathrm{~cm}, \mathrm{BC} / \mathrm{DE}=1 / 2$ so $\mathrm{AB} / \mathrm{AD}$ must also be $1 / 2$ So, as $\mathrm{AD}=15, \mathrm{AB}$ must be 7.5 cm . Thus Ans.d
15. Let the corresponding sides of the other triangle be a, b, and c.
$\therefore \mathrm{a} / 2=\mathrm{b} / 3=\mathrm{c} / 4=(\mathrm{a}+\mathrm{b}+\mathrm{c}) / 9=81 / 9=9 \therefore$ Required sides are $18 \mathrm{~cm}, 27 \mathrm{~cm}$ and 36 cm .

16, Let the no. be ababa
Given $\mathrm{a}+\mathrm{b}=10$
And $a^{3} b^{2}$ has to be maximum
$\therefore \mathrm{a} / 3=\mathrm{b} / 2$
$\Rightarrow \mathrm{a}: \mathrm{b}=3: 2$
Hence, the no. is 64646
17. Let radius of the circle be $\mathrm{r} \therefore \mathrm{PT}=3 \mathrm{r} / 2$ and $\mathrm{TQ}=\mathrm{r} / 2$.
$\therefore(3 r / 2)(r / 2)=6 \times 2=12 . \therefore 3 r^{2} / 4=12 \Rightarrow r^{2}=16 . \therefore r= \pm 4$. Hence the diameter of the circle is 8 cm . But it is impossible to draw a chord of length 8 cm (other than the diameter) in a circle of diameter 8 cm . The circle must be imaginary.
18. In these type of problems, the place that is more restricted should be filled first. Unit digit place can be filled in two ways (by 3 or 5 only) while the hundred's place can be filled in three ways (by 2 or 3 or 5).
Therefore starting from the unit's place we can form the nos. in $2 \times 2 \times 2$ ways.
19. There are 13 letters of which Himanshu knows position of three correctly. This means that now he has to arrange only 10 letters. No. of ways in which these 10 letters can be arranged are 10!/(3!.3!). Out of these there is only one
arrangement of correct message. So the chance that he deciphers the message correctly is $\frac{1}{10!/(3!3!)}$
20. The five digit numbers (not containing zero) is ${ }^{9} \mathrm{C}_{5} \cdot{ }^{4} \mathrm{C}_{2}$ (the greatest of the five digits gets fixed at the central place) and those containing zero ${ }^{9} \mathrm{C}_{4} \cdot{ }^{3} \mathrm{C}_{2}$ (zero will be the last digit).

