2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY	
III B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS AERO DYNAMICS-I (AERONAUTCAL ENGINEERING)	
NOVEMBER 2005	
TIM MA	E – 3 HOUR RK - 80
Answer any FIVE Questions All Questions carry equal marks	
1. (a) Define the terms velocity potential , circulation and vorticity as used in 2-d fluid mechanics. How are these related.	
(b) Write a note on stream function in fluid mechanics.	[8+8]
2. (a) Develop an expression for stream function for a point source. Hence plot stream lines and equipotential lines.	
(b) A sink of 120 m2/s is situated 3m downstream of source of the same strengt stream of uniform flow of 30 m/sec. Find the fineness ratio of the oval formed by stream lines.	h in =0 [8+8]
3. Show that part of the flow given by complex potential function $! = \cos h - 1 z c$, represents irrotational flow in a convergent-divergent channel of constant depth.	[16]
4. Write Navier-Stokes equations in vector form and in long hand as well. Hence	[]
(a) Explain each term on LHS and RHS	
(b) Obtain Euler equation	
(c) Obtain equation fo <mark>r Stokes</mark> Flow , both in vector form & long hand.	
5. Consider a doublet in a uniform stream. Which kind of flow it represents? Develop an expression for surface pressure distribution over the =0 stream lines. Compare the same with that from a wind tunnel test	
6. (a) Write a note on Blasius theorem.	[16]
(b) Elaborate the term Kutta condition.	
7. A thin airfoil has a camber line defined by $y = kx (x - 1) (x - 2)$, $x \& y$ are nondimentionalized with chord C, with origin at the leading edge. Consider maximum to $k = 2^{3/2}$	[8+8] mum
camber to be 2%. Determine Cm at = 30. 8. (a) Explain the formation of Horse shoe vortex on a lifting wing.	[16]
(b) Write a note on Biot-Savart's law.	[8+8]