

1. (a) Define the terms velocity potential, circulation and vorticity as used in 2-d fluid mechanics. How are these related.
(b) Write a note on stream function in fluid mechanics.
[8+8]
2. (a) Develop an expression for stream function for a point source. Hence plot stream lines and equipotential lines.
(b) A sink of $120 \mathrm{~m} 2 / \mathrm{s}$ is situated 3 m downstream of source of the same strength in stream of uniform flow of $30 \mathrm{~m} / \mathrm{sec}$. Find the fineness ratio of the oval formed by $=0$ stream lines.
3. Show that part of the flow given by complex potential function ! = cos h-1 z c, represents irrotational flow in a convergent-divergent channel of constant depth.
4. Write Navier-Stokes equations in vector form and in long hand as well. Hence
(a) Explain each term on LHS and RHS
(b) Obtain Euler equation
(c) Obtain equation for Stokes Flow, both in vector form \& long hand.
5. Consider a doublet in a uniform stream. Which kind of flow it represents? Develop an expression for surface pressure distribution over the $=0$ stream lines. Compare the same with that from a wind tunnel test.
6. (a) Write a note on Blasius theorem.
(b) Elaborate the term Kutta condition.
7. A thin airfoil has a camber line defined by $y=k x(x-1)(x-2), x \& y$ are nondimentionalized with chord C, with origin at the leading edge. Consider maximum camber to be 2%. Determine Cm at $=30$.
8. (a) Explain the formation of Horse shoe vortex on a lifting wing.
(b) Write a note on Biot-Savart's law.
