## Lines and Angles

## Fundamental concepts of Geometry:

**Point**: It is an exact location. It is a fine dot which has neither length nor breadth nor thickness but has position i.e., it has no magnitude.

**Line segment:** The straight path joining two points A and B is called a line segment  $\overline{AB}$ . It has and points and a definite length.

**Ray:** A line segment which can be extended in only one direction is called a ray.

**Intersecting lines**: Two lines having a common point are called intersecting lines. The common point is known as the point of intersection.

**Concurrent lines**: If two or more lines intersect at the same point, then they are known as concurrent lines.

Angles: When two straight lines meet at a point they form an angle.



In the figure above, the angle is represented as  $\angle AOB$ . OA and OB are the arms of  $\angle AOB$ . Point O is the vertex of  $\angle AOB$ . The amount of turning from one arm (OA) to other (OB) is called the measure of the angle ( $\triangle AOB$ ).

**Right angle**: An angle whose measure is 90° is called a right angle.



Acute angle: An angle whose measure is less then one right angle (i.e., less than 90°), is called an acute angle.





**Obtuse angle:** An angle whose measure is more than one right angle and less than two right angles (i.e., less than 180° and more than 90°) is called an obtuse angle.



**Complementary angles**: If the sum of the two angles is one right angle (i.e., 90°), they are called complementary angles. Therefore, the complement of an angle  $\theta$  is equal to 90° –  $\theta$ .

**Reflex angle** 



**Supplementary angles:** Two angles are said to be supplementary, if the sum of their measures is 180°. **Example:** Angles measuring 130° and 50° are supplementary angles. Two supplementary angles are the supplement of each other. Therefore, the supplement of an angle  $\theta$  is equal to  $180^\circ - \theta$ .





**Vertically opposite angles:** When two straight lines intersect each other at a point, the pairs of opposite angles so formed are called vertically opposite angles.



In the above figure,  $\angle 1$  and  $\angle 3$  and angles  $\angle 2$  and  $\angle 4$  are vertically opposite angles.

Note: Vertically opposite angles are always equal.

**Bisector of an angle**: If a ray or a straight line passing through the vertex of that angle, divides the angle into two angles of equal measurement, then that line is known as the Bisector of that angle.



In the figure above, Q and R are the feet of perpendiculars drawn from P to OB and OA. It follows that PQ = PR.



**Parallel lines:** Two lines are parallel if they are coplanar and they do not intersect each other even if they are extended on either side.

**Transversal:** A transversal is a line that intersects (or cuts) two or more coplanar lines at distinct points.



In the above figure, a transversal t is intersecting two parallel lines, I and m, at A and B, respectively.

Angles formed by a transversal of two parallel lines:



In the above figure, I and m are two parallel lines intersected by a transversal PS. The following properties of the angles can be observed:

 $\angle 3 = \angle 5$  and  $\angle 4 = \angle 6$  [Alternate angles]  $\angle 1 = \angle 5$ ,  $\angle 2 = \angle 6$ ,  $\angle 4 = \angle 8$ ,  $\angle 3 = \angle 7$  [Corresponding angles]  $\angle 4 + \angle 5 = \angle 3 + \angle 6 = 180^{\circ}$  [Supplementary angles]

In the figure given below, which of the lines are parallel to each other?



Answer: As  $67^{\circ} + 113^{\circ} = 180^{\circ}$ , lines P and S, R and S, and S and U are parallel. Therefore, lines P, R, S and U are parallel to each other. Similarly, lines Q and T are parallel to each other.



In the figure given below, PQ and RS are two parallel lines and AB is a transversal. AC and BC are angle bisectors of  $\angle$ BAQ and  $\angle$ ABS, respectively. If  $\angle$ BAC = 30°, find  $\angle$ ABC and  $\angle$ ACB.



Answer: We draw a line CF // DE at C, as shown in the figure below.





 $\angle$ BCF =  $\angle$ ABC = 55°  $\Rightarrow \angle$ DCF = 30°.  $\Rightarrow$  CDE = 180° - 30° = 150°.

#### **TRIANGLES**

Triangles are closed figures containing three angles and three sides.



**General Properties of Triangles:** 

1. The sum of the two sides is greater than the third side: a + b > c, a + c > b, b + c > a

The two sides of a triangle are 12 cm and 7 cm. If the third side is an integer, find the sum of all the values of the third side.

Answer: Let the third side be of x cm. Then, x + 7 > 12 or x > 5. Therefore, minimum value of x is 6. Also, x < 12 + 7 or x < 19. Therefore, the highest value of x is 18. The sum of all the integer values from 6 to 18 is equal to 156.

2. The sum of the three angles of a triangle is equal to 180°: In the triangle below  $\angle A + \angle B + \angle C = 180^{\circ}$ 

Also, the exterior angle  $\alpha$  is equal to sum the two opposite interior angle A and B, i.e.  $\alpha = \angle A + \angle B$ .

α

h

Find the value of a + b in the figure given below:



Answer: In the above figure,  $\angle CED = 180^{\circ} - 125^{\circ} = 55^{\circ}$ .  $\angle ACD$  is the exterior angle of  $\triangle ABC$ . Therefore,  $\angle ACD = a + 45^{\circ}$ . In  $\triangle CED$ ,  $a + 45^{\circ} + 55^{\circ} + b = 180^{\circ} \Rightarrow a + b = 80^{\circ}$ 







Points D, E and F divide the sides of triangle ABC in the ratio 1: 3, 1: 4, and 1: 1, as shown in the figure. What fraction of the area of triangle ABC is the area of triangle DEF?



The medians of a triangle are lines joining a vertex to the midpoint of the opposite side. In the figure, AF, BD and CE are medians. The point where the three medians intersect is known as the **centroid**. O is the centroid in the figure.

- The medians divide the triangle into two equal areas. In the figure, area  $\triangle ABF = \text{area } \triangle AFC = \text{area } \triangle BDC = \text{area } \triangle BDA = \text{area } \triangle CBE = \text{area } \triangle CEA = \frac{\text{Area } \triangle ABC}{2}$
- The centroid divides a median internally in the ratio 2: 1. In the figure,  $\frac{AO}{OF} = \frac{BO}{OD} = \frac{CO}{OE} = 2$
- Apollonius Theorem:  $AB^2 + AC^2 = 2(AF^2 + BF^2)$  or  $BC^2 + BA^2 = 2(BD^2 + DC^2)$  or  $BC^2 + AC^2 = 2(EC^2 + AE^2)$

## ABCD is a parallelogram with AB = 21 cm, BC = 13 cm and BD= 14 cm. Find the length of AC.

Answer: The figure is shown below. Let AC and BD intersect at O. O bisects AC and BD. Therefore, OD is the median in triangle ADC.



 $\Rightarrow AD^2 + CD^2 = 2(AO^2 + DO^2) \Rightarrow AO = 16$ . Therefore, AC = 32.



6. Altitudes of a Triangle:



The altitudes are the perpendiculars dropped from a vertex to the opposite side. In the figure, AN, BF, and CE are the altitudes, and their point of intersection, H, is known as the orthocenter. Triangle ACE is a right-angled triangle. Therefore,  $\angle$ ECA = 90° –  $\angle$ A. Similarly in triangle CAN,  $\angle$ CAN = 90° –  $\angle$ C. In triangle AHC,  $\angle$ CHA = 180° – ( $\angle$ HAC +  $\angle$ HCA) = 180° – (90° –  $\angle$ A + 90° –  $\angle$ C) =  $\angle$ A +  $\angle$ C = 180° –  $\angle$ B.

Therefore,  $\angle AHC$  and  $\angle B$  are supplementary angles.

7. Internal Angle Bisectors of a Triangle:

In the figure above, AD, BE and CF are the internal angle bisectors of triangle ABC. The point of intersection of these angle bisectors, I, is known as the incentre of the triangle ABC, i.e. centre of the circle touching all the sides of a triangle.

- $\angle BIC = 180^{\circ} (\angle IBC + \angle ICB) = 180 (\frac{B}{2} + \frac{C}{2}) = 180 (\frac{B+C}{2}) = 180 (\frac{180 A}{2}) = 90 + \frac{A}{2}$
- $\frac{AB}{AC} = \frac{BD}{CD}$  (internal bisector theorem) REMEMBER!

R

8. Perpendicular Side Bisectors of a Triangle:



In the figure above, the perpendicular bisectors of the sides AB, BC and CA of triangle ABC meet at O, the circumcentre (centre of the circle passing through the three vertices) of triangle ABC. In figure above, O is the centre of the circle and BC is a chord. Therefore, the angle subtended at the centre by BC will be twice the angle subtended anywhere else in the same segment. Therefore,  $\angle BOC = 2 \angle BAC$ .



9. Line Joining the Midpoints:



In the figure above, D, E and F are midpoints of the sides of triangle ABC. It can be proved that: • FE // BC, DE // AB and DF // AC.

- $FE = \frac{BC}{2}$ ,  $DE = \frac{AB}{2}$ ,  $FD = \frac{AC}{2}$
- Area  $\triangle DEF = Area \ \triangle AFE = Area \ \triangle BDF = Area \ \triangle DEC = \frac{Area \ \triangle ABC}{4}$
- **Corollary**: If a line is parallel to the base and passes through midpoint of one side, it will pass through the midpoint of the other side also.

In the figure given below: AG = GE and GF // ED, EF //BD and ED // BC. Find the ratio of the area of triangle EFG to trapezium BCDE.

Answer: We know that line parallel to the base and passing through one midpoint passes through another midpoint also. Using this principle, we can see that G, F, E and D are midpoints of AE, AD, AB, and AC respectively. **Therefore**, **GF**, **EF**, **ED**, **and BD are medians in triangles AFE**, **AED**, **ADB and ABC**.



We know that medians divide the triangle into two equal areas. Let the area of triangle AGF = a. Therefore, the areas of the rest of the figures are as shown above. The required ratio = a/12a = 1/12.



### Types of triangles:

1. 32°

2.84°



Answer: Let  $\angle AEC = \angle EAC = \alpha$  and  $\angle CBF = \angle CFB = \beta$ . We know that  $\alpha + \beta = 180^{\circ} - \angle D = 140^{\circ}$ .  $\angle ACB = 180^{\circ} - (\angle ECA + \angle BCF) = 180^{\circ} - (180^{\circ} - 2\alpha + 180^{\circ} - 2\beta) = 100^{\circ}$ .

In the figure (not drawn to scale) given below, if AD = CD = BC, and  $\angle BCE = 96^{\circ}$ , how much is  $\angle DBC$ ? (CAT 2003)



4. Cannot be determined.

Answer: Let  $\angle DAC = \angle ACD = \alpha$  and  $\angle CDB = \angle CBD = \beta$ . As  $\angle CDB$  is the exterior angle of triangle ACD,  $\beta = 2\alpha$ . Now  $\angle ACD + \angle DCB + 96^{\circ} = 180^{\circ} \Rightarrow \alpha + 180^{\circ} - 2\beta + 96^{\circ} = 180^{\circ} \Rightarrow 3\alpha = 96^{\circ} \Rightarrow \alpha = 32^{\circ} \Rightarrow \beta = 64^{\circ}$ 



### Similarity of triangles:



Two triangles are similar if their corresponding angles are equal or corresponding sides are in proportion. In the figure given above, triangle ABC is similar to triangle PQR. Then  $\angle A = \angle P$ ,  $\angle B = \angle Q$  and  $\angle C = \angle R$  and

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = \frac{AI}{PK} \text{ (altitudes)} = \frac{AJ}{PL} \text{ (medians)}$$

Therefore, if you need to prove two triangles similar, prove their corresponding angles to be equal or their corresponding sides to be in proportion.

### Ratio of Areas:

If two triangles are similar, the ratio of their areas is the ratio of the squares of the length of their corresponding sides. Therefore,



In triangle AC, shown above, DE // BC and  $\frac{DE}{BC} = \frac{1}{4}$ . If area of triangle ADE is 10, find the area

of the trapezium BCED and the area of the triangle CED. Answer:  $\triangle ADE$  and  $\triangle ABC$  are similar. Therefore,

 $\frac{\text{Area of triangle ABC}}{\text{Area of triangle ADE}} = \frac{\text{BC}^2}{\text{DE}^2} = 16 \Rightarrow \text{Area of triangle ABC} = 160 \Rightarrow \text{Area of trapezium BCDE} = \text{Area}$  $\Delta \text{ABC} - \text{Area } \Delta \text{ADE} = 160 - 10 = 150.$ 





To find the area of triangle CDE, we draw altitudes of triangle BDC and CDE, as shown above. Let the length of the altitudes be h.

Area of triangle BCD =  $\frac{1}{2} \times BC \times h$  and area of triangle CDE =  $\frac{1}{2} \times DE \times h$ Area of triangle BCD BC

 $\Rightarrow \frac{\text{Area of triangle BCD}}{\text{Area of triangle CDE}} = \frac{\text{BC}}{\text{DE}} = 4$ 

Therefore, we divide the area of the trapezium BCED in the ratio 1:4 to find the area of triangle CDE.

The required area =  $=\frac{1}{5} \times 150 = 30$ .

In the diagram given below,  $\angle ABD = \angle CDB = \angle PQD = 90^{\circ}$ . If AB: CD = 3: 1, the ratio of CD: PQ is (CAT 2003- Leaked)



are similar. Therefore,  $\frac{PQ}{CD} = \frac{a}{a+b}$ 

Dividing the second equality by the first, we get.  $\frac{AB}{CD} = \frac{a}{b} = 3$ . Therefore,  $\frac{CD}{PQ} = \frac{a+b}{a} = \frac{4}{3} = 1:0.75$ 





Answer:





Join R and P, and S and Q.  $\angle$ PRO =  $\angle$ QSO = 90°. Therefore,  $\triangle$ PRO and  $\triangle$ QSO are similar. Therefore,  $\frac{PR}{SQ} = \frac{PO}{QO} \Rightarrow QO = \frac{3}{4} \times PO = 21 \Rightarrow PQ = \frac{1}{4} \times PO = 7 \Rightarrow PQ : QO = 1 : 3$ . Also, PQ = 7 and the radii are in

the ratio 4: 3. Therefore, radius of circle II = 3. Now SO =  $\sqrt{QO^2 - SQ^2} = \sqrt{441 - 9} = \sqrt{432} = 12\sqrt{3}$ 

**NOTE:** In similar triangles, sides opposite to equal angles are in proportion.

Consider the triangle ABC shown in the following figure where BC = 12 cm, DB = 9 cm, CD = 6 cm and  $\angle$ BCD =  $\angle$ BAC. What is the ratio of the perimeter of the triangle ADC to that of the triangle BDC? (CAT 2005)



Answer: In  $\triangle$ BAC and  $\triangle$ BCD,  $\angle$ BCD =  $\angle$ BAC,  $\angle$ B is common  $\Rightarrow \angle$ BDC =  $\angle$ BCA. Therefore, the two triangles are similar.

 $\frac{AB}{BC} = \frac{AC}{CD} = \frac{BC}{BD} \Rightarrow AB = \frac{BC^2}{BD} = 16 \Rightarrow AD = 7, \text{ Similarly, } AC = \frac{BC \times CD}{BD} = 8$ Perimeter  $\triangle ADC = 7 + 6 + 8 = 21$ , perimeter  $\triangle BDC = 27$ . Therefore, ratio =  $\frac{7}{9}$ 



### **REGULAR POLYGONS**

A regular polygon is a polygon with all its sides equal and all its interior angles equal. All vertices of a regular lie on a circle whose center is the center of the polygon.



Each side of a regular polygon subtends an angle  $\theta = \frac{360}{n}$  at the centre, as shown in the figure.

Also  $X = Y = \frac{180 - \frac{360}{n}}{2} = \frac{180(n-2)}{2n}$ . Therefore, interior angle of a regular polygon =  $X + Y = \frac{180(n-2)}{n}$ . Sum of all the angles of a regular polygon =  $n \times \frac{180(n-2)}{n} = 180(n-2)$ .

What is the interior angle of a regular octagon?

Answer: The interior angle of a regular octagon =  $\frac{180(8-2)}{8} = 135^{\circ}$ 

**NOTE!** The formula for sum of all the angles of a regular polygon, i.e. 180(n-2), is true for all n-sided convex simple polygons.

Let's look at some polygons, especially quadrilaterals:

**Quadrilateral**: A *quadrilateral* is any closed shape that has four sides. The sum of the measures of the angles is 360°. Some of the known quadrilaterals are square, rectangle, trapezium, parallelogram and rhombus.

**Square**: A square is regular quadrilateral that has four right angles and parallel sides. The sides of a square meet at right angles. The diagonals also bisect each other perpendicularly.



If the side of the square is a, then its perimeter = 4a, area =  $a^2$  and the length of the diagonal =  $\sqrt{2}a$ 



**Rectangle**: A rectangle is a parallelogram with all its angles equal to right angles.



## Properties of a rectangle:

Sides of rectangle are its heights simultaneously.

*Diagonals of a rectangle are equal:* AC = BD.

A square of a diagonal length is equal to a sum of squares of its sides' lengths, i.e.  $AC^2 = AD^2 + DC^2$ . Area of a rectangle = length × breadth

**Parallelogram**: A parallelogram is a quadrangle in which opposite sides are equal and parallel.

E

Any two opposite sides of a parallelogram are called *bases*, a distance between them is called a *height*. Area of a parallelogram = base  $\times$  height Perimeter = 2(sum of two consecutive sides)

## Properties of a parallelogram:

- 1. Opposite sides of a parallelogram are equa I(AB = CD, AD = BC).
- 2. Opposite angles of a parallelogram are equal ( $\angle A = \angle C$ ,  $\angle B = \angle D$ ).
- 3. Diagonals of a parallelogram are divided in their intersection point into two (AO = OC, BO = OD).
- 4. A sum of squares of diagonals is equal to a sum of squares of four sides:
- $AC^{2} + BD^{2} = AB^{2} + BC^{2} + CD^{2} + AD^{2}.$

**Rhombus:** If all sides of parallelogram are equal, then this parallelogram is called a *rhombus*.



Diagonals of a rhombus are mutually perpendicular ( AC  $\perp$ BD ) and divide its angles into two (  $\angle$ DCA =  $\angle$ BCA,  $\angle$ ABD =  $\angle$ CBD etc. ).

Area of a rhombus =  $\frac{1}{2} \times$  product of diagonals =  $\frac{1}{2} \times AC \times BD$ 



**Trapezoid**: Trapezoid is a quadrangle two opposite sides of which are parallel.



Here AD || BC. Parallel sides are called *bases* of a trapezoid, the two others (AB and CD ) are called *lateral sides*. A distance between bases (BM) is a *height*. The segment EF, joining midpoints E and F of the lateral sides, is called a *midline* of a trapezoid. A *midline of a trapezoid is equal to a half-sum of bases*:



and parallel to them: EF || AD and EF || BC. A trapezoid with equal lateral sides (AB = CD) is called an isosceles trapezoid. In an isosceles trapezoid angles by each base, are equal ( $\angle A = \angle D$ ,  $\angle B = \angle C$ ).

Area of a trapezoid =  $\frac{\text{Sum of parallel sides}}{2} \times \text{height} = \frac{\text{AD} + \text{BC}}{2} \times \text{BM}^{\textcircled{\text{sum of parallel sides}}}$ 

In a trapezium ABCD with bases  $\overline{AB}$  and  $\overline{CD}$ , the sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the non-parallel sides and twice the product of the lengths of the parallel sides:  $AC^2 + BD^2 = AD^2 + BC^2 + 2 \cdot AB \cdot CD$ 

Here is one more polygon, a regular hexagon:

**Regular Hexagon:** A regular hexagon is a closed figure with six equal sides.



If we join each vertex to the centre of the hexagon, we get 6 equilateral triangles. Therefore, if the side of the hexagon is a, each equilateral triangle has a side a. Hence, area of the regular hexagon =

$$6 \times \frac{\sqrt{3}}{4} a^2 = \frac{3\sqrt{3}}{2} a^2$$
.



### <u>CIRCLE</u>

A circle is a set of all points in a plane that lie at a constant distance from a fixed point. The fixed point is called the center of the circle and the constant distance is known as the radius of the circle.



**Arc:** An arc is a curved line that is part of the circumference of a circle. A **minor arc** is an arc less than the semicircle and a **major arc** is an arc greater than the semicircle.

**Chord**: A chord is a line segment within a circle that touches 2 points on the circle.

**Diameter**: The longest distance from one end of a circle to the other is known as the diameter. It is equal to twice the radius.

**Circumference**: The perimeter of the circle is called the circumference. The value of the circumference =  $2\pi r$ , where r is the radius of the circle.

Area of a circle: Area =  $\pi x$  (radius)<sup>2</sup> =  $\pi r^2$ .

Sector: A sector is like a slice of pie (a circular wedge).

Area of Circle Sector: (with central angle  $\theta$ ) Area =  $\frac{\theta}{360} \times \pi \times r^2$ 

**Length of a Circular Arc:** (with central angle  $\theta$ ) The length of the arc =  $\frac{\theta}{360} \times 2\pi \times r$ 

Tangent of circle: A line perpendicular to the radius that touches ONLY one point on the circle

# If 45° arc of circle A has the same length as 60° arc of circle B, find the ratio of the areas of circle A and circle B.

**Answer:** Let the radius of circle A be  $r_1$  and that of circle B be  $r_2$ .

 $\Rightarrow \frac{45}{360} \times 2\pi \times r_1 = \frac{60}{360} \times 2\pi \times r_2 \Rightarrow \frac{r_1}{r_2} = \frac{4}{3} \Rightarrow \text{Ratio of areas} = \frac{\pi r_1^2}{\pi r_2^2} = \frac{16}{9}.$ 

## RULE!

The perpendicular from the center of a circle to a chord of the circle bisects the chord. In the figure below, O is the center of the circle and OM  $\perp$  AB. Then, AM = MB.





Conversely, the line joining the center of the circle and the midpoint of a chord is perpendicular to the chord.

In a circle, a chord of length 8 cm is twice as far from the center as a chord of length 10 cm. Find the circumference of the circle.

**Answer:** Let AB and CD be two chords of the circle such that AB = 10 and CD = 8. Let O be the center of the circle and M and N be the midpoints of AB and CD. Therefore OM  $\perp$  AB, ON  $\perp$  CD, and if ON = 2x then OM = x.

 $BM^2 + OM^2 = OB^2$  and  $DN^2 + ON^2 = OD^2$ . OB = OD =  $r \rightarrow (2x)^2 + 4^2 = r^2$  and  $x^2 + 5^2 = r^2$ . Equating both the equations we get,  $4x^2 + 16 = x^2 + 25$ Or x =  $\sqrt{3}$   $\rightarrow$  r =  $2\sqrt{7}$ . Therefore circumference =  $2\pi r = 4\pi\sqrt{7}$ .

What is the distance in cm between two parallel chords of length 32 cm and 24 cm in a circle of radius 20 cm? (CAT 2005)

1. 1 or 7 4.4 or 28 2. 2 or 14 3. 3 or 21 Answer: The figures are shown below: 16 20 0 16 20 12

12

The parallel chords can be on the opposite side or the same side of the centre O. The perpendicular (s) dropped on the chords from the centre bisect (s) the chord into segments of 16 cm and 12 cm, as shown in the figure. From the Pythagoras theorem, the distances of the chords from the centre are

 $\sqrt{20^2 - 16^2} = 12$  and  $\sqrt{20^2 - 12^2} = 16$ , respectively. Therefore, the distances between the chords can be 16 + 12 = 28 cm or

16 - 12 = 4 cm.



In the following figure, the diameter of the circle is 3 cm. AB and MN are two diameters such that MN is perpendicular to AB. In addition, CG is perpendicular to AB such that AE:EB = 1:2, and DF is perpendicular to MN such that NL:LM = 1:2. The length of DH in cm is (CAT 2005)



Answer: In the above figure, AB = MN = 3 cm and AE: EB = NL: LM = 1: 2  $\Rightarrow$  AE = NL = 1 cm. Now AO = NO = 1.5 cm  $\Rightarrow$  OE = HL = OL = 0.5 cm. Join O and D  $\Rightarrow$  OD<sup>2</sup> = OL<sup>2</sup> + DL<sup>2</sup>  $\Rightarrow$  DL<sup>2</sup> =  $\sqrt{OD^2 - OL^2} = \sqrt{1.5^2 - 0.5^2} = \sqrt{2} \Rightarrow$  DH = DL - HL =  $\sqrt{2} - \frac{1}{2} = \frac{2\sqrt{2} - 1}{2}$ 

## RULE!

Equal chords are equidistant from the center. Conversely, if two chords are equidistant from the center of a circle, they are equal.

## RULE!

In the following figure, two chords of a circle, AB and CD, intersect at point P. Then,  $AP \times PB = CP \times PD$ .



In the following figure, length of chord AB = 12. O-P-C is a perpendicular drawn to AB from center O and intersecting AB and the circle at P and C respectively. If PC = 2, find the length of OB.



Answer: Let us extend OC till it intersects the circle at some point D.





CD is the diameter of the circle. Since OP is perpendicular to AB, P is the midpoint of AB. Hence, AP = PB = 6. Now  $DP \times PC = AP \times PB$ 

 $\rightarrow$  DP = 18. Therefore, CD = 20  $\rightarrow$  OC = 10. OB = OC = radius of the circle = 10.

## RULE!

In a circle, equal chords subtend equal angles at the center.

# RULE!

The angle subtended by an arc of a circle at the center is double the angle subtended by it at any point on the remaining part of the circumference.



Let angle ACB be inscribed in the semi-circle ACB; that is, let AB be a diameter and let the vertex C lie on the circumference; then angle ACB is a right angle.

In the figure AB and CD are two diameters of the circle intersecting at an angle of 48°. E is any point on arc CB. Find angle CEB.



**Answer:** Join E and D. Since arc BD subtends an angle of 48° at the center, it will subtend half as many degrees on the remaining part of circumference as it subtends at the center. Hence, angle DEB = 24°. Since angle CED is made in a semicircle, it is equal to 90°. Hence, angle CEB = angle CED + angle DEB =  $90^\circ + 24^\circ = 114^\circ$ .



In the above figure, AB is a diameter of the circle and C and D are such points that CD = BD. AB and CD intersect at O. If angle AOD = 45°, find angle ADC. Answer: Draw AC and CB. CD = BD  $\Rightarrow \angle DCB = \angle DBC = \theta$  (say).  $\angle ACB = 90^{\circ} \Rightarrow \angle ACD = 90^{\circ} - \theta$ .  $\angle ABD = \angle ACD = 90^{\circ} - \theta \Rightarrow \angle ABC = \theta - (90^{\circ} - \theta) = 2\theta - 90$ . In  $\triangle OBC$ ,  $45^{\circ} + 2\theta - 90 + \theta = 180^{\circ} \Rightarrow 3\theta = 225^{\circ} \Rightarrow \theta = 75^{\circ}$ .  $\angle ADC = \angle ABC = 2\theta - 90 = 60^{\circ}$ .

In the adjoining figure, chord ED is parallel to the diameter AC of the circle. If angle CBE = 65°, then what is the value of angle DEC? (CAT 2004)



The straight line drawn at right angles to a diameter of a circle from its extremity is tangent to the circle. Conversely, If a straight line is tangent to a circle, then the radius drawn to the point of contact will be perpendicular to the tangent.



Let AB be a diameter of a circle, and let the straight line CD be drawn at right angles to AB from its extremity B; then the straight line CD is tangent to the circle.





If two tangents are drawn to a circle from an exterior point, the length of two tangent segments are equal. Also, the line joining the exterior point to the centre of the circle bisects the angle between the tangents.



In the above figure, two tangents are drawn to a circle from point P and touching the circle at A and B. Then, PA = PB. Also,  $\angle APO = \angle BPO$ . Also, the chord AB is perpendicular to OP.

In the following figure, lines AP, AQ and BC are tangent to the circle. The length of AP = 11. Find the perimeter of triangle ABC.

В

D

Q

**Answer:** let AB = x and BP = y. Then, BD = BP because they are tangents drawn from a same point B. Similarly CD = CQ and AP = AQ. Now perimeter of triangle ABC = AB + BC + CA = AB + BD + DC + AC = AB + BP + CQ + AC = AP + AQ = 2AP = 22.

### RULE!

From an external point P, a secant P-A-B, intersecting the circle at A and B, and a tangent PC are drawn. Then,  $PA \times PB = PC^2$ .

In the following figure, if PC = 6, CD = 9, PA = 5 and AB = x, find the value of x



**Answer:** Let a tangent PQ be drawn from P on the circle. Hence,  $PC \times PD = PQ^2 = PA \times PB \rightarrow 6 \times 15 = 5 \times (5 + x) \rightarrow x = 13$ 

In the following figure, PC = 9, PB = 12, PA = 18, and PF = 8. Then, find the length of DE.





Answer: In the smaller circle PC × PB = PF × PE  $\rightarrow$  PE =  $12 \times \frac{9}{8} = \frac{27}{2}$ . In the larger circle, PB × PA = PE × PD  $\rightarrow$  PD =  $12 \times 18 \times \frac{2}{27}$  = 16. Therefore, DE = PD - PE = 16 - 13.5 = 2.5

# RULE!

The angle that a tangent to a circle makes with a chord drawn from the point of contact is equal to the angle subtended by that chord in the alternate segment of the circle.



30

3.80°

In the figure above, PA is the tangent at point A of the circle and AB is the chord at point A. Hence, angle BAP = angle ACB.

In the figure given below (not drawn to scale), A, B and C are three points on a circle with centre O. The chord BA is extended to a point T such that CT becomes a tangent to the circle at point C. If  $\angle ATC = 30^{\circ}$  and  $\angle ACT = 50^{\circ}$ , then the angle  $\angle BOA$  is (CAT 2003)

1.100°

not possible to determine

**Answer**: Tangent TC makes an angle of 50° with chord AC. Therefore,  $\angle$ TBC = 50°. In triangle TBC,  $\angle$ BCT = 180° – (30° + 50°) = 100°. Therefore,  $\angle$ BCA =  $\angle$ BCT –  $\angle$ ACT = 100° – 50° = 50°.  $\angle$ BOA = 2 $\angle$ BCA = 100°.

2.150°

Two circles touch internally at P. The common chord AD of the larger circle intersects the smaller circle in B and C, as shown in the figure. Show that ,  $\angle APB = \angle CPD$ .



Answer: Draw the common tangent XPY at point P.



4.



Now, for chord DP,  $\angle$ DPX =  $\angle$ DAP, and for chord PC,  $\angle$ CPX =  $\angle$ CBP  $\Rightarrow \angle$ CPD =  $\angle$ CPX -  $\angle$ DPX =  $\angle$ CBP -  $\angle$ DAP. In triangle APB,  $\angle$ CBP is the exterior angle  $\Rightarrow \angle$ CBP =  $\angle$ CAP +  $\angle$ APB  $\Rightarrow \angle$ CBP -  $\angle$ CAP =  $\angle$ APB  $\Rightarrow \angle$ CPD =  $\angle$ CPX -  $\angle$ DPX =  $\angle$ CBP -  $\angle$ DAP =  $\angle$ APB

RULE!

When two circles intersect each other, the line joining the centers bisects the common chord and is perpendicular to the common chord.

In the figure given above, the line joining the centers divides the common chord in two equal parts and is also perpendicular to it.

Two circles, with diameters 68 cm and 40 cm, intersect each other and the length of their common chord is 32 cm. Find the distance between their centers.

**Answer:** In the figure given above, the radii of the circles are 34 cm and 20 cm, respectively. The line joining the centers bisects the common chord. Hence, we get two right triangles: one with hypotenuse equal to 34 cm and height equal to 16 cm, and the other with hypotenuse equal to 20 cm and height equal to 16 cm. Using Pythagoras theorem, we get the bases of the two right triangles equal to 30 cm and 12 cm. Hence, the distance between the centers = 30 + 12 = 42 cm.



## SOLIDS

A solid figure, or **solid**, is any portion of space bounded by one or more surfaces, plane or curved. These surfaces are called the **faces** of the solid, and the intersections of adjacent faces are called **edges**. Let's have a look at some common solids and their properties.

**Parallelepiped:** A parallelepiped is a solid bounded by three pairs of parallel plane faces.



- Each of the six faces of a parallelepiped is a parallelogram.
- Opposite faces are congruent.
- The four diagonals of a parallelepiped are concurrent and bisect one another.

**Cuboid**: A parallelepiped whose faces are rectangular is called a cuboid. The three dimensions associated with a cuboid are its length, breadth and height (denoted as I, b and h here.)

- The length of the three pairs of face diagonals are  $BF = \sqrt{b^2 + h^2}$ ,  $AC = \sqrt{l^2 + h^2}$ , and  $DF = \sqrt{l^2 + b^2}$ .
- The length of the four equal body diagonals  $AF = \sqrt{l^2 + b^2 + h^2}$ .
- The total surface area of the cuboid = 2(lb + bh + hl)
- Volume of a cuboid = lbh
- The radius of the sphere circumscribing the cuboid =  $\frac{\text{Diagonal}}{2} = \frac{\sqrt{l^2 + b^2 + h^2}}{2}$ .

• Note that if the dimensions of the cuboid are not equal, there cannot be a sphere which can be inscribed in it, i.e. a sphere which touches all the faces from inside.

**Euler's Formula**: the number of faces (*F*), vertices (*V*), and edges (*E*) of a solid bound by plane faces are related by the formula F + V = E + 2 gives here 6 + 8 = 12 + 2.

**Cube:** A cube is a parallelepiped all of whose faces are squares.



- Total surface area of the cube =  $6a^2$
- Volume of the cube = a<sup>3</sup>



- Length of the face diagonal b =  $\sqrt{2}a$
- Length of the body diagonal  $c = \sqrt{3}a$
- Radius of the circumscribed sphere =  $\frac{\sqrt{3a}}{2}$
- Radius of the inscribed sphere =  $\frac{a}{2}$
- Radius of the sphere tangent to edges =  $\frac{a}{\sqrt{2}}$

**Prism**: A prism is a solid bounded by plane faces, of which two, called the ends, are congruent figures in parallel planes and the others, called side-faces are parallelograms. The ends of a prism may be triangles, quadrilaterals, or polygons of any number of sides.



• The side- edges of every prism are all parallel and equal.

• A prism is said to be right, if the side-edges are perpendicular to the ends: In this case the side faces are rectangles. Cuboids and cubes are examples.

- Curved surface area of a right prism = perimeter of the base × height
- Total surface area of a right prism = perimeter of the base × height + 2 × area of the base
- Volume of a right prism = area of the base × height

**Right Circular Cylinder**: A right circular cylinder is a right prism whose base is a circle. In the figure given below, the cylinder has a base of radius r and a height of length h.



- Curved surface area of the cylinder =  $2\pi rh$
- Total surface area of the cylinder =  $2\pi rh + \pi r^2$
- Volume of the cylinder =  $\pi r^2 h$

**Pyramid**: A pyramid is a solid bounded by plane faces, of which one, called the base, is any rectilinear figure, and the rest are triangles having a common vertex at some point not in the plane of the base. The slant height of a pyramid is the height of its triangular faces. The height of a pyramid is the length of the perpendicular dropped from the vertex to the base.





In a pyramid with n sided regular polygon as its base,

- Total number of vertices = n + 1
- Curved surface area of the pyramid =  $\frac{\text{Perimeter}}{2} \times \text{slant height}$ .
- Total surface area of the pyramid =  $\frac{\text{Perimeter}}{2} \times \text{slant height} + \text{area of the base.}$
- Volume of the pyramid =  $\frac{\text{Base area}}{3} \times \text{height}$

**Tetrahedron**: A tetrahedron is a pyramid which has four congruent equilateral triangles as it four faces. The figure below shows a tetrahedron with each face equal to an equilateral triangle of side a.



- Total number of vertices = 4
- The four lines which join the vertices of a tetrahedron to the centroids of the opposite faces meet at a point which divides them in the ratio 3: 1. In the figure. AH: HF = 3: 1.
- Curved surface area of the tetrahedron  $=\frac{3\sqrt{3}a^2}{4}$
- Total surface area of the tetrahedron  $= \sqrt{3}a^2$ .
- Height of the tetrahedron =  $\frac{\sqrt{6a}}{3}$
- Volume of the tetrahedron =  $\frac{\sqrt{2}a^3}{12}$

**Right Circular Cone**: a right circular cone is a pyramid whose base is a circle. In the figure given below, the right circular cone has a base of radius r and a height of length h.





- Slant height I =  $\sqrt{h^2 + r^2}$
- Curved surface area of the cone =  $\pi$ rl
- Total surface area of the cone =  $\pi r l + \pi r^2$
- Volume of the cone =  $\frac{\pi r^2 h}{3}$

**Frustum of a Cone**: When a right circular cone is cut by a plane parallel to the base, the remaining portion is known as the frustum.

 $\int \mathbf{R} = \int \mathbf{R} = \sqrt{\mathbf{h}^2 + (\mathbf{R} - \mathbf{r})^2}.$ Slant height I =  $\sqrt{\mathbf{h}^2 + (\mathbf{R} - \mathbf{r})^2}.$ Curved surface area of the frustum =  $\pi(\mathbf{r} + \mathbf{R})$ I
Total surface area =  $\pi(\mathbf{r} + \mathbf{R})$ I +  $\pi(\mathbf{r}^2 + \mathbf{R}^2)$ Volume of the frustum =  $\frac{\pi \mathbf{h}(\mathbf{r}^2 + \mathbf{R}^2 + \mathbf{R} \mathbf{r})}{3}$ 

**Sphere**: A sphere is a set of all points in space which are at a fixed distance from a given point. The fixed point is called the centre of the sphere, and the fixed distance is the radius of the sphere.



- Surface area of a sphere =  $4\pi r^2$
- Volume of a sphere =  $\frac{4}{3}\pi r^3$

Spherical Shell: A hollow shell with inner and outer radii of r and R, respectively.







- **1.** A regular polygon with *n* sides has interior angles measuring  $178^{\circ}$ . What is the value of  $\frac{180}{2}$ ?
- 2. A regular hexagon is inscribed in a circle of radius 6. What is the area of the hexagon?
- **3.** A rhombus has a perimeter of 52 cm and a diagonal measuring 24 cm. What is the length, in centimeters, of the other diagonal?
- 4. A rhombus has diagonals measuring 6 cm and 10 cm. What is its area in square centimeters?
- (a) 30 (b) 32 (c) 60 (d) 64 (e) None of these
  5. Two gears are circular, and the circles are tangent as shown. If the centers are fixed and the radii are 30 cm and 40 cm, how many revolutions will the larger
- 6. A regular hexagon has a perimeter of 12 cm. What is its area ?

(b) 72√3 *▲* 

(a)  $6\sqrt{3}$ 

circle have made when the smaller circle has made 4 revolutions?

7. If the expressions shown are the degree measures of the angles of the pentagon, find the value of x + y.

(c) 144√3

8. One angle of a regular polygon measures 177°. How many sides does it have?

- (a) 89 (b) 120 (c) 177 (d) 183 (e) None of these
- **9.** Octagon *ABCDEFGH* is similar to octagon *JKLMNOPQ*. If AB = 10, JK = 8, and  $m \angle A = 120^{\circ}$ , what is  $m \angle J$  in degrees?

(d)  $216\sqrt{3}$ 

(e) None of these

x+2v

7 y

2x

- (a)  $96^{\circ}$  (b)  $120^{\circ}$  (c)  $135^{\circ}$  (d)  $150^{\circ}$  (e) None of these
- 10. Find the sum of the measures of one interior and one exterior angle of a regular 40-gon.
  - (a)  $168^{\circ}$  (b)  $174^{\circ}$  (c)  $180^{\circ}$  (d)  $186^{\circ}$  (e) None of these

**11.** One angle of a parallelogram measures  $(2x+y)^{\circ}$ . Another angle of the same quadrilateral (but <u>not</u> the opposite angle) measures  $(x+2y)^{\circ}$ . What is (x+y)? (a) 30 (b) 60 (c) 90 (d) 120 (e) None of these



in centimeters. 13. A right triangle with legs measuring 12 cm and 16 cm is inscribed in a circle. What is the circumference of the circle in centimeters? (a)  $14\pi$ (b)  $16\pi$ (c)  $20\pi$ (d)  $28\pi$ (e) None of these 14. A square has a diagonal measuring 8 cm. When its area is expressed as  $2^{K}$  square centimeters, what is K? (b) 5 (c) 6 (d) 7 (e) None of these (a) 4 **15.** One-fourth of the area of a square with each side measuring 2x cm is sectioned off and removed. ("Before And After" pictures of the procedure appear to the right.) The area removed is itself square-shaped. What is the perimeter of the resultant figure in centimeters? (d) 9*x* (a) 6*x* (b) 7*x* (c) 8x (e) None of these 16. A central angle measuring  $M^{\circ}$  intercepts an arc in a circle of radius r cm. The length of the subtended arc is  $8\pi$  cm. The area of the sector formed by (and including) the angle is  $48\pi$  cm<sup>2</sup>. Evaluate (c) 20 (d) 40 (e) None of these (a) 5 (b) 10 17. A regular hexagon with a perimeter of  $12\sqrt{2}$  units lies in the Cartesian plane in such a way that its center is on the origin, two of the vertices lie on the x-axis, and the midpoints of two of its sides lie

12. An isosceles trapezoid has a mid segment measuring 13 cm and an area of

52 cm<sup>2</sup>. If one base has length 10 cm, find the perimeter of the trapezoid

on the *y*-axis. If the portion of the hexagon that lies in Quadrant I is completely revolved around the *x*-axis, a solid whose volume is *X* cubic units results. If the same portion is completely revolved around the *y*-axis, a solid with a volume of *Y* cubic units results. Evaluate  $\left(\frac{X}{X}\right)^2$ .

(d)  $\frac{16}{9}$ 

(a)  $\frac{48}{49}$  (b) 1 (c)  $\frac{4}{3}$ 



13

http://www.totalgadha.com

- **18.** A circle is inscribed inside a square. The square is inscribed inside another circle. If the area of the small circle is  $\pi$  cm<sup>2</sup>, what is the area of the large circle, in square centimeters?
  - (a)  $\pi\sqrt{2}$  (b)  $2\pi$ (c)  $2\pi\sqrt{2}$  (d)  $4\pi$ 
    - (d)  $4\pi$  (e) None of these



- **19.** A circle is inscribed in a triangle with sides measuring 4 cm, 6 cm, and 8 cm. What is the area of the circle in square centimeters?
  - (a)  $\frac{7\pi}{6}$  (b)  $\frac{3\pi}{2}$  (c)  $\frac{5\pi}{3}$  (d)  $\frac{7\pi}{4}$  (e) None of these
- **20**.An equilateral triangle  $T_1$  has area  $100\sqrt{3}$  sq. cm. A second triangle,  $T_2$ , is drawn with vertices on the midpoints of the sides of  $T_1$ . The midpoints of the sides of  $T_2$  are the vertices of triangle  $T_3$ , and so on. What is the sum of the perimeters, in centimeters, of all the triangles,  $T_1$ ,  $T_2$ ,  $T_{3...}$  etc.?
- **21**.In a 30°- 60°- 90° triangle, the longest side and the shortest side differ in length by 2002 units. What is the length of the longest side?
- 22. What is the area of a triangle with sides of lengths 7, 8 and 9?
- **23**.The base of an isosceles triangle is 80 cm long. If the area of the triangle cannot exceed 1680 square centimeters, what is the maximum number of centimeters in the perimeter of the triangle?
- 24.A triangle has sides measuring 41 cm, 41 cm and 18 cm. A second triangle has sides measuring 41 cm, 41 cm and x cm, where x is a whole number not equal to 18. If the two triangles have equal areas, what is the value of x?
- **25**.In a triangle ABC, AB = 16 units,  $\angle CAB = 30^{\circ}$ , and  $\angle ACB = 45^{\circ}$ . What is the length of BC?
- **26**.You have 6 sticks of lengths 10, 20, 30, 40, 50 and 60 cm. The number of non-congruent triangles that can be formed by choosing three of the sticks to make the sides is
  - (a) 3
  - (b) 6
  - (c) 7
  - (d) 10
  - (e) 12
- **27**.A triangle has sides of lengths 10, 24 and n, where n is a positive integer. The number of values of n for which this triangle has three acute angles is
  - (a) 1
  - (b) 2
  - (c) 3
  - (d) 4
  - (e) 5



ABC forms an equilateral triangle in which B is 2 km from A. A person starts walking from B in a direction parallel to AC and stops when he reaches a point D directly east of C. He, then, reverses direction and walks till he reaches a point E directly south of C.

- 28.Then D is
  - (a) 3 km east and 1 km north of A
  - (b) 3 km east and  $\sqrt{3}$  km north of A
  - (c)  $\sqrt{3}$  km east and 1 km south of A
  - (d)  $\sqrt{3}$  km west and 3 km north of A

### **29**.The total distance walked by the person is

- (a) 3 km
- (b) 4 km
- (c) 2√3 km
- (d) 6 km

**30**. How many non-congruent triangles with perimeter 7 have integer side lengths?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

**31**. When the base of a triangle is increased by 10% and he altitude to this base is decreased by 10%, the area is

- (a) increased by 10%
- (b) decreased by 10%
- (c) increased by 1%
- (d) decreased by 1%
- (e) unchanged
- **32**.In the figure given below, triangle ABC is right-angled. What is the area of triangle ABD?
  - (a) 6
  - (b) 7
  - (c) 8
  - (d) 9 (e) 10
  - (e) 10

**33**.Let ABC be an equilateral triangle with sides x. Let P be the point of intersection of the three angle bisectors. What is the length of AP?

(a)  $\frac{x\sqrt{3}}{3}$  (b)  $\frac{x\sqrt{3}}{6}$  (c)  $\frac{5\sqrt{3}}{6}$ 

**34**.In the figure below,  $\angle ABC$  and  $\angle BDA$  are both right angles. If v + w = 35 and x + y = 37, then what is the value of y?



б

в

А

З

D

5



http://www.totalgadha.com

- (a) 11
- (b) 12
- (c) 13
- (d) 14
- (e) 15



**38**.What is the measure of  $\angle RST$ ?

- (a) 7.5°
- (b) 15°
- (c) 20°
- (d) 45°
- **39**.Two sides of a triangle are of length 15 and 7 centimeters. If the length of the third side is an integer value, what is the sum of all the possible lengths of the third side?
  - (a) 253
  - (b) 231


(c) 210 (d) 195

An agriculturist is conducting an experiment in a rectangular field ABCD. He sows seeds of a crop evenly across the field, but he uses a new variety of manure in the area CEF (E and F are midpoints of BD and BE, respectively) whereas he uses the old variety in the rest of the field. The yield per unit area of the crop in  $\triangle$ CEF is 3 times the yield in rest of the field.



**40**. What is the ratio of the amount of crop produced in  $\triangle$ CEF to that produced in the rest of the field?

- (a) 3: 4
- (b) 1: 2
- (c) 3: 7
- (d) 3: 8

**41**.In triangle ABC, the longest side BC is of length 20 and the altitude from A to BC is of length 12. A rectangle DEFG is inscribed in ABC with D on AB, E on AC, and both F and G on BC. The maximum possible area of rectangle DEFG is

- (a) 60
- (b) 100
- (c) 120
- (d) 150
- (e) 200

**42**. The degree measure of an angle whose complement is eighty percent of half the angle's supplement is

- (a) 60
- (b) 45
- (c) 30
- (d) 15

**43**.Two congruent 90°-60°-30° triangles are placed, as shown, so that they overlap partly and their hypotenuses coincide. If the hypotenuse is 12 *cm*, find the area common to both triangles

- (a)  $6\sqrt{3}$  cm<sup>2</sup>
- (b)  $8\sqrt{3}$  cm<sup>2</sup>
- (c)  $9\sqrt{3}$  cm<sup>2</sup>
- (d)  $12\sqrt{3}$  cm<sup>2</sup>
- (e) 24  $cm^2$

In triangle ABC, side AC and the perpendicular bisector of side BC meet in point D, and BD bisects  $\angle$ ABC. If AD = 9, and DC = 7.







44. What is the area of triangle ABD?

- (a) 14√5
- (b) 21



(c) 28 (d) 21√5



http://www.totalgadha.com

**49**. Two telegraph poles of height *a* and *b* meters are on opposite sides of a road. Wires are drawn from top of one pole to the bottom of the other. If the wires are completely taut, then how many feet above the ground will the wires cross each other?



Triangle ABC is right angled at B. AB = 7, AC = 25 and D is a point on BC such that AD is the bisector of angle A, as shown in the figure.

**50**.What is the length of AD?

- (a) 9.00 (a) 8.75
- (b) 12.5 (c) 13.0
- (0) 10.0

Sides of triangle ABC are AB = 12, BC = 18, and AC = 10. There is a point D, on BC, such that both incircles of triangles ABD and ACD touch AD at a common point E, as shown in the adjacent figure.



51.The length of CD

- (a) is 8
- (a) is 12
- (b) is 16
- (c) cannot be determined

ABC is an isosceles triangle right angled at B. A square is inscribed inside the triangle with three vertices of the square on three sides of the triangle as shown in the adjacent figure. It is known that the ratio x to y is equal to 2 to 1.



52. The ratio of the area of the square to the area of the triangle is equal to

- (a) 2: 5
- (a) 1: 10
- (b) 1: 3
- (c) 2: 3



In triangle ABC, sides AB, AC, and BC are extended till Q, P and R such that AC = AP, BC = CR, and AB = BQ, as shown in the adjacent figure. It is known that the area of triangle ABC is 10 square centimetres.



53. What is the area of triangle PQR?

- (a) 40 cm<sup>2</sup> (a) 70 cm<sup>2</sup>
- (b) 80 cm<sup>2</sup>
- (c) 90 cm<sup>2</sup>
- **54**.A water lily with a rigid straight stem extends one meter above the surface of the water. When it bends at the bottom of its stem, it disappears under the water at a distance three meter from where the stem originally came out of the water. How deep is the lake?
  - (a) 6
  - (a) 3
  - (b) 4
  - (c) 5

In the adjacent figure, ABCD is a square and ABE is an equilateral triangle.

55.Angle DEC is equal to

(a) 15° (a) 30° (b) 45° (c) 20°

In triangle ABC, D and E are any points on AB and AC such AD = AE. The bisector of angle C meets DE at F. It is known that angle  $B = 60^{\circ}$ .

56. What is the degree measure of angle DFC?

- (a) 25°
- (a) 30°
- (b) 45°
- (c) 60°

In the adjacent figure, triangle ABC is equilateral and D, E, and F are points on AB, BC, and AC such AD = BE = CF =  $\frac{AB}{3}$ . BF, CD, and AE intersect to form triangle PQR inside ABC.



57. What is the ratio of the area of triangle PQR to that of triangle ABC?

(a) 1: 9 (a) 1: 7



(b) 1: 8 (c) 1: 12

- **58.**Four lines parallel to the base of a triangle divide each of the other sides into five equal segments and the area into five distinct parts. If the area of the largest of these parts is 27, then what is the area of the original triangle?
  - (a) 135 (a) 75
  - (b) 225 (c) 175
- In the diagram AB = 35, AE = CD = x, EC = 8, ED = 7. Also, angle DEC = angle ABC. × 35 в 59. What is the value of x? (a) 1 (a) 2 (b) 3 (c) 4 In triangle PQR, points X, Y and Z are on PQ, PR and QR, respectively, such that PX = XQ,  $\frac{RY}{YP} = \frac{a}{b}$ , and  $\frac{QZ}{ZR} = 3$ . Also  $(\text{area } \Delta PXY)^2 = (\text{area } \Delta QXZ) \times (\text{area } \Delta RYZ)$ 60.The ratio a: b is (a)  $\frac{3+\sqrt{105}}{6}$ (a)  $\frac{2+\sqrt{35}}{6}$ (b)  $\frac{3+\sqrt{31}}{3}$ (c)  $\frac{\sqrt{105}-3}{6}$ Triangle ABC is equilateral. D, the midpoint of BC, is the centre of the semicircle whose radius is R which touches AB and AC, as well as a smaller circle with radius r which also touches AB and AC. **61**.What is the value of  $\frac{R}{r}$ ?





- **66**.S is the point on the side QR of a triangle PQR such that  $\angle$  PSR =  $\angle$  QPR. The length of the side PR is 8cm. Find the maximum possible length of QS if it is known that both QR and SR take integral values greater than one.
  - (a) 16 cm.
  - (b) 18 cm.
  - (c) 30 cm.
  - (d) 32 cm.
  - (e) none of the above



**67**.In a right angled triangle with sides p, q, r (where p < q < r), 2p + 7r = 9q. If p = 12cm, find the value of r

- (a) 25 cm (b) 25.5 cm (c) 26 cm
- (d) 26.5 cm
- (e) none of the above



- 71.D is the mid point of the side QR of a triangle PQR. O is a point on PD such that PO is 4 times OD. QO and RO produced meet PR and PQ in E and F, respectively. Find the length of the side PQ if FQ = 3cm.
  - (a) 3 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 12 cm
- **72**.In  $\triangle$  MNO, the bisector of  $\angle$  NMO intersects NO at P. MN = 9cm, MO = 12cm. PO = PN + 1. Find the length of PO.
  - (a) 2 cm
  - (b) 3 cm
  - (c) 4 cm



- (d) 5 cm (e) 6 cm
- **73.**In  $\triangle$  PQR, the line segment MN intersects PQ in M and PR in N such that MN is parallel to QR. Find the ratio of QM: QP if it is known that the area of the  $\triangle$  PMN is half of the  $\triangle$  PQR.

| (a) | $\frac{\sqrt{2}}{\sqrt{2}-1}$ |
|-----|-------------------------------|
| (b) | $\frac{\sqrt{2}-1}{\sqrt{2}}$ |
| (c) | $\frac{\sqrt{2}+1}{\sqrt{2}}$ |
| (d) | $\frac{\sqrt{2}+2}{\sqrt{2}}$ |

(a)  $\frac{5}{9}$ 

(b)  $\frac{1}{3}$ 

(c)  $\frac{1}{2}$ 

(d)  $\frac{13}{16}$ 

(e)

(e) None of the above

**74**.ABC is a triangle with area 1. AF = AB/3, BE = BC/3 and ED = FD. Find the area of the shaded figure.

**75**.Find the sum of squares of the medians MP and OQ drawn from the two acute angled vertices of a right angled triangle MNO. The longest side of  $\Delta$  MNO is 20cm.

- (a) 200 sq. cm
- (b) 300 sq. cm
- (c) 400 sq. cm
- (d) 500 sq. cm
- (e) cannot be determined



- **76**.Right triangle ABC, with AB = 48, and BC = 20, is kept on a horizontal plane. Another right-triangle ADC (right-angled at C) is kept on the triangle with DC = 39 cm. A vertical line is drawn through point D, intersecting AB at E. Then the length of BE is equal to
  - (a) 15
  - (b) 21
  - (c) 12
  - (d) 18





## (e) cannot be determined

- 77.A concave dodecagon (the cross shown to the right) is inside of, and shares four nonconsecutive sides with, a regular octagon. Each reflex angle of the dodecagon measures 270°, and every other interior angle of the dodecagon is a right angle. If the octagon has a perimeter of 16 cm, what is the area of the dodecagon in square centimeters?
  - (a)  $4 + 8\sqrt{2}$
  - (b) 16
  - (c)  $4 + 16\sqrt{2}$
  - (d) 20
  - (e) None of these



- **78**. Two concentric circles are drawn so that the tangent segment (shown) to the smaller circle is a chord of the larger circle. If the area of the annulus (region outside the smaller circle and inside the larger one) is  $100 \pi$ , find the length of the chord shown ( $\overline{AB}$ ).
- **79**. Two circles are externally tangent, and have a common external tangent line, with points of tangency P and Q. PQ = 10 cm, and the radii of the circles are R cm and R 1 cm. The center of the smaller circle (the one which contains point Q) is S, and a line through S is drawn tangent to the larger circle. The point of tangency of this line is T, as shown. If  $ST = 2\sqrt{19} \text{ cm}$ , find the length of the larger radius R.
- **80**. Two circles are externally tangent with a common external tangent. If the radii of the circles are 9 and 16, what is the distance (x) between points of tangency?
- **81**.In the rectangle ABCD, the perpendicular bisector of AC divides the longer side AB in a ratio 2:1. Then the angle between AC and BD is
  - (a) 30°
  - (b) 45°
  - (c) 60°
  - (d) 90°
- **82**.An isosceles right triangle is inscribed in a square. Its hypotenuse is a midsegment of the square. What is the ratio of the triangle's area to the square's area?





(a) 
$$\frac{1}{4}$$
 (b)  $\frac{\sqrt{2}}{5}$  (c)  $\frac{\sqrt{2}}{4}$  (d)  $\frac{1}{2}$  (e) None of these

**83**.When each side of a square is increased by 4 centimeters, the area is increased by 120 square centimeters. By how many centimeters should each side of the original square be decreased in order to decrease the area of the original square by 120 square centimeters?

- (a) 5
- (b) 6
- (c) 7
- (d) 8

Three circles are drawn touching each other, their centers lying on a straight line. The line PT is 16 units long and is tangent to the two smaller circles, with points P and T lying on the larger circle.

84. The area inside the largest circle but outside the smaller two circles is equal to

- (a) 4π
- (b) 8π
- (c) 16π
- (d) 32π

The sum of the number of sides of two regular polygons  $S_1$  and  $S_2$  is 12 and the sum of the number of diagonals of  $S_1$  and  $S_2$  is 19.

- **85**.Then  $S_1$  and  $S_2$  are
  - (a) square and octagon
  - (b) heptagon and pentagon
  - (c) both hexagons
  - (d) triangle and nonagon

**86.** If an arc of 45° on circle A has the same length as an arc of 30° on circle B, then the ratio of the area of circle A to the area of circle B is

- (a) 2: 3
- (b) 3: 2
- (c) 4: 9
- (d) 9: 4

Monty is playing with geometrical shapes made of paper. He cuts four equilateral triangles of side length 2 and joins them together to form a parallelogram ABCD, as shown in the figure.



87. What is the length of the diagonal AC?

- (a) √8
- (b) √14
- (c) 2√7
- (d) 6.5

**88**.In a circle, chords AB and CD intersect perpendicularly at P. if AP = 20, PB = 36 and CP = 24, then the perimeter of the circle is



(a)  $2\pi\sqrt{119}$ (b)  $2\pi\sqrt{793}$ (c)  $2\pi\sqrt{65}$ (d)  $2\pi\sqrt{484}$ 

A square is inscribed inside another square, as shown in the figure. Each vertex of the inner square divides the side of the outer square in the ratio x: y. The area of the inside square is  $4/5^{\text{th}}$  of the area of the bigger square.



**89**. The value of x/y is equal to

(a)  $1 + \sqrt{5}$ (b)  $\frac{\sqrt{5}}{2}$ (c)  $4 - \sqrt{15}$ (d)  $4 + \sqrt{15}$ 

From petal arrangements of roses to shape of our galaxy, the number phi, or the 'golden ratio', is present in many natural phenomena, even in the structure of human body. To find the value of golden ratio, a square of side unity is drawn and midpoint of a side is joined to an opposite vertex, as shown in the figure. Then, an arc of radius r, meeting AB at E is drawn, and the rectangle BEFC is constructed. The value of a + b gives the golden ratio.





ABCD is an isosceles trapezoid with AB = 10 and CD = 6. The length of the altitude EF = 8.



в

F

А

**91**.Then the perimeter of ABCD is

(a)  $16 + 2\sqrt{11}$ (b)  $16 + 8\sqrt{15}$ (c)  $16 + 4\sqrt{17}$ (d)  $16 + 4\sqrt{13}$ 









http://www.totalgadha.com

A circle is inscribed inside an isosceles trapezoid with lengths of its parallel sides as 75 and 108 units, as shown in the figure.



100. The diameter of the inscribed circle is

- (a) 87.5
- (b) 90
- (c) 91.5
- (d) 100
- **101.** A square and an equilateral triangle have the same perimeter. What is the ratio of the area of the circle circumscribing the square to the area of the circle inscribed in the triangle?
  - (a) 16:9
  - (b) 18:5
  - (c) 24:7
  - (d) 27:8

A cubic container of edge 16 cm is 5/8 full of liquid. It is tilted along an edge. The diagram shows the cross section of the container and the liquid in it. The ratio of length of line segment LC to length of line segment BK is 3: 2 exactly.

**102.** The length of line segment LC is (a) 6



- **103.** Hexagon ABCDEF is inscribed in a circle. The sides AB, CD, and EF are each *x* units in length whereas the sides BC, DE, and FA are each *y* units in length. Then, the radius of the circle is
  - (a)  $[(x^2 + y^2 + xy)/3]^{1/2}$ (b)  $[(x^2 + y^2 + xy)/2]^{1/2}$ (c)  $[(x^2 + y^2 - xy)/3]^{1/2}$ (d)  $[(x^2 + y^2 - xy)/2]^{1/2}$

Two circles touch each other externally and also touch a bigger circle of diameter 10 cm internally, as shown in the figure. A triangle is formed by joining the centers of the three circles.



**104**. The perimeter of the triangle, in cm, is (a) 5 (b) 10

(c) 15

(d) 20





- **107.** In the above figure, arcs AB, BC and CD are equal. Then the value of  $\angle$ ECA is equal to
- **108.** A jogging park has two identical circular tracks touching each other, and a rectangular track enclosing the two circles. The edges of the rectangles are tangential to the circles. Two friends, **A** and **B**, start jogging simultaneously from the point where one of the circular tracks touches the smaller side of the rectangular track. **A** jogs along the rectangular track, while **B** jogs along the two circular tracks in a figure of eight. Approximately, how much faster than **A** does **B** have to run (in percentage), so that they take the same time to return to their starting point?



**109**. The length of the side of the square is 2. Find the radius of the smaller circle.



**110.** A cone of volume V is cut into three pieces by planes parallel to the base. If the planes are at heights  $\frac{h}{3}$  and  $\frac{2h}{3}$  above the base, the volume of the piece of the cone between the two planes is



**111.** In triangle ABC, D and E are points on AC and AB such DE // BC and length of DE is one-third of BC. If the area of triangle ABC is 216 square units, find the area of the shaded triangle.

ABCD is a square inscribed inside a circle. PQ is a diameter of the circle and is parallel to AB. EFGH is a square inscribed inside the semicircle with diameter PQ. The radius of the circle is 5 cm.



112. What is the value of the shaded area, common to both the squares?

To a circle with center O, tangents PA and PB are drawn from an external point P touching the circle at A and B, respectively, as shown in the figure.

Also, 
$$\frac{1}{AO^2} + \frac{1}{PA^2} = \frac{1}{25}$$
.

**113**. The length of the chord AB is



**114**. 9 squares are arranged as shown in the figure above. If the area of square A is 1cm2 and that of square B is 81 cm2, find the area of square I.



115. Four points A, B, C, and D lie on a straight line in the X-Y plane, such that AB = BC = CD, and the length of AB is 1 metre. An ant at A wants to reach a sugar particle at D. But there are insect repellents kept at points B and C. The ant would not go within one metre of any insect repellent. The minimum distance in metres the ant must traverse to reach the sugar particle.



- **116.** In the figure, ABCD is a square with side length 17 cm. Triangles AGB, BFC, CED and DHA are congruent right triangles. If EC = 8, find the area of the shaded figure.
- **117.** A cow is tied with a 50 m rope to a corner of a 20 m by 30 m rectangular field. The field is completely fenced and the cow can graze on the outside only. What area of the land can the cow graze?

Triangle ABC is a right angled triangle, right-angled at B. The pink circle, of radius 4 cm touches the three sides of the triangle and the blue circle, with radius 1 cm, touches the pink circle and the two sides of the triangle, as shown in the figure.



- **118.** Find the length of the side AB.
- **119.** Rectangular tiles each of size 70 cm by 30 cm must be laid horizontally on a rectangular floor of size 110 cm by 130 cm, such that the tiles do not overlap. A tile can be placed in any orientation so long as its edges are parallel to the edges of the floor. No tile should overshoot any edge of the floor. The maximum number of tiles that can be accommodated on the floor is

Carmen is ascending a staircase where every stair is 1ft. high and 1 ft. wide. There is one stair from the ground floor to the first floor, two stairs from the first floor to the second floor..., 100 stairs from the 99<sup>th</sup> floor to the 100<sup>th</sup> floor. The stairs take a sharp right turn after every floor. The building has exactly 100 floors.

**120.** At the top of the 100<sup>th</sup> floor, how far is Carmen from the bottom of the staircase?





- **121.** P is a point inside rectangle ABCD such that AP = 4 units, BP = 3 units and PD = 5 units. Find the length of PC.
- **122**. All three sides of a triangle have integer side lengths of 11, 60 and *n* cm. For how many values of *n* is the triangle acute-angled?



**124**. In the figure, the square and the circle are intersecting each other such that AB = BC. If the radius of the circle, with the centre as O, is 1 unit and  $OB = \frac{1}{2}$ , then find the length of AB.



**125.** In the figure, CD is perpendicular to chord AB. Find the radius of the circle.



Three circles, each of radius 1 cm, are touching each other. AB is the line passing through the centres of the three circles, with A lying on one of the outermost circle and B being the centre of the other outermost circle, as shown in the figure. AC is tangent to the circle with centre B and cuts chord DE on the middle circle.



http://www.totalgadha.com

- **126**. Find the length of DE.
- **127.** In triangle ABC, AB = 5 cm, BC = 6 cm, and CA = 7 cm. There is a point P inside the triangle such that P is at a distance of 2 cm from AB and 3 cm from BC. How far is P from CA?



**128.** In a trapezium PQRS, PQ is parallel to RS and 2PQ = 3RS. UV is drawn parallel to PQ and cuts SP in U & RO in V such that SU: UP = 1: 2. Find the ratio UV : SR

- **129**. In the given figure BCDE is a parallelogram and F is the midpoint of the side DE. Find the length of AG, If CG = 3cm.
- **130.** P, Q, S, and R are points on the circumference of a circle of radius *r*, such that PQR is an equilateral triangle and PS is a diameter of the circle. What is the perimeter of the quadrilateral PQSR?
- 131. In the following figure, the diameter of the circle is 3 cm. AB and MN are two diameters such that MN is perpendicular to AB. In addition, CG is perpendicular to AB such that AE:EB = 1:2, and DF is perpendicular to MN such that NL:LM = 1:2. The length of DH in cm is







**135.** A circle passes through the vertex C of a rectangle ABCD and touches its sides AB and AD at M and N respectively. If the distance from C to the line segment MN is equal to 5 units find the area of rectangle ABCD.





**140.** In the figure given above, ABCD is a rectangle. The area of the isosceles right triangle  $ABE=7cm^2$ ; EC=3(BE). The area of ABCD (*in*  $cm^2$ ) is

(a) 21 (b) 28 (c) 42 (d) 56



57





**145.** Shown above are three circles, each of radius 20 and centres at P, Q and R; further AB=5, CD=10 and EF=12. What is the perimeter of the triangle PQR?





**146.** In the given figure, points A, B, C and D lie on the circle. AD=24 and BC=12. What is the ratio of the area of  $\triangle$ CBE to that of  $\triangle$ ADE?





**149.** AB  $\perp$  BC, BD  $\perp$  AC and CE bisects  $\angle C, \angle A = 30^{\circ}$ . Then what is  $\angle CED$ ? (a)  $30^{\circ}$  (b)  $60^{\circ}$  (c)  $45^{\circ}$  (d)  $65^{\circ}$ 





**152.** In  $\triangle ABC$ , median  $\overline{AM}$  is such that m  $\angle BAC$  is divided in the ratio 1:2, and  $\overline{AM}$  is extended through to D so that  $\angle DBA$  is a right angle, then the ratio AC: AD is equal to

- (a) 1: 2 (b) 1: 3 (c) 1: 1
- (d) 2: 3
- (e) 3: 4





**153.** In square ABCD, E is the midpoint of  $\overline{AB}$ . A line perpendicular to  $\overline{CE}$  at E meets  $\overline{AD}$  at F. What fraction of the area of square ABCD is the area of triangle CEF?



**155**. The measure of the longer base of a trapezoid is 97. The measure of the line segment joining the midpoints of the diagonals is 3. Find the measure of the shorter base.



**156.** In  $\square ABCD$ , E is on  $\overline{BC}$ .  $\overline{AE}$  cuts diagonal  $\overline{BD}$  at G and  $\overrightarrow{DC}$  at F. If AG = 6 and GE = 4, find EF. **157.** In  $\triangle ABC$ , median  $\overline{AD}$  is perpendicular to median  $\overline{BE}$ . Find AB if BC = 6 and AC = 8.





**158.** On sides AB and DC of rectangle ABCD, points F and E are chosen so that AFCE is a rhombus. If AB = 16 and BC = 12, find EF.

159. The radius of a cylinder is increased by 16.67%. By what percent should the height of the cylinder reduced to maintain the volume of the cylinder?
(a) 10%
(b) 14.28%
(c) 16.67%
(c) 20%
(e) 25%

160. The ratio of the radius and height of a cylinder is 2:3. Further the ratio of the numerical of value of its curved surface area to its volume is 1:2. Find the total surface area of the cylinder.
(a) 3π units
(b) 6π units
(c) 12π units
(d) 24π units
(e) 48π units

**161.** An ant starts from a point on the bottom edge of a circular cylinder and moves in a spiral manner along the curved surface area such that it reaches the top edge exactly as it completes two circles. Find

the distance covered by the ant if the radius of the cylinder is  $\frac{12}{\pi}$  and height is 20 units?

(a)  $2\sqrt{61}$  units (b)  $4\sqrt{61}$  units (c) 24 units (d) 52 units (e) 60 units

**162.** A sphere is carved out of a cone with height 15cm and radius of base circle 12cm. What is the maximum volume of the cylinder?

**163.** A right circular cone of volume 'P', a right circular cylinder of volume 'Q' and sphere of Volume 'R' all have the same radius, and the common height of the cone and the cylinder is equal to the diameter of the sphere. Then :

(a) P - Q + R = 0(b) P + Q = R(c) 2P = Q + R(d)  $P^2 - Q^2 + R^2 = 0$ (e) 2P + 2Q = 3R

**164**. The volume of the solid generated by the revolution of an isosceles right angled triangle about its hypotenuse of length 3x is:

(a) 
$$\frac{8\pi x^3}{3}$$
  
(b)  $8\pi x^3$   
(c)  $\frac{9}{4}\pi x^3$   
(d)  $\frac{27\pi x^3}{3}$ 



(e)  $\frac{32\pi x^3}{3}$ 

(a) 3.6 L

🏷 (b) 4 L

165. A sphere of 10.5cm radius is melted and cast into a cuboid of maximum volume. The total surface area of such cuboid is approximately :

(b) 1650 (c) 1810 (d) 1932 (e) 1680 (a) 1720

**166.** One day sanjeev planned to make lemon tea and used a portion of the spherical lemon as shown in the figure. Find out the volume of the remaining lemon. Radius of the lemon is 6cm.

167. A solid metallic cylinder of base radius 3 cm and height 5 cm is melted to make 'n' solid cones of height 1 cm and base radius 1 mm. Find the value of 'n'.

**168**. Three cubes of volumes, 1 cm<sup>3</sup>, 216 cm<sup>3</sup> and 512 cm<sup>3</sup> are melted to form a new cube. What is the diagonal of the new cube?

A cylinder with height and radius in a ratio of 2: 1 is full of soft drink. It is tilted so as to allow the soft drink to flow off till the point where the level of soft drink just touches the lowest point of the upper mouth and the highest point of the base, as shown in the figure.

169. If 2.1 L soft drink is retained in the cylinder, what is the capacity of the cylinder?

(d) 4.2 L

(e) 5 L

To facilitate the absorption of food, the inside walls of the small intestine are covered with finger-like tiny projections called villi, as shown in the figure. Every villi can be assumed to be a cylinder of length  $1.5 \times 10^{-3}$  m and radius  $1.3 \times 10^{-4}$  m. It can be assumed that villi cover the walls of the intestine completely.

(c) 1.2 L



**170.** By what fraction is the absorption area of the intestinal wall increased (approximately) because of the villi? (e) 45

(a) 25 (b) 30 (c) 35 (d) 40







**175**. What is the volume of the cone? (a)  $\frac{250\pi}{3}$ (b)  $\frac{125\pi}{\sqrt{3}}$ (c)  $\frac{1000\pi}{\sqrt{3}}$ (d)  $\frac{1000\pi}{3}$ In a cuboidal box of unknown dimensions, a rod is kept along the body diagonal as shown in the figure. The length of the rod when observed from the side, front and bottom of the box, appears to be 5,  $4\sqrt{10}$  and  $\sqrt{153}$  cm respectively, as shown. Te  $\sqrt{153}$ correct length of the rod is to be filled in the space provided inside the box in the figure 4√10 **176**. The length of the rod is (b) 2√29 (c) 3√13 (a) 13 (d) 15 A right circular cone of height H cm and base diameter H cm, and a sphere of diameter H cm are kept on a horizontal plane. If a horizontal plane slices both the solids, both the cross-sections will be circles. A horizontal plane at height h gives cross-sections of equal areas with hÍ both the cone and the sphere, as shown in the figure. **177**. The value of height h is (a)  $\frac{H}{3}$ (b)  $\frac{H}{4}$ (c)  $\frac{H}{5}$ (d)  $\frac{H}{c}$ 178. If the height of a cylinder is decreased by 10% and the radius of the cylinder is increased by 10%, then the volume of the cylinder (a) remains unchanged (b) decreases by 8.9% (c) increases by 8.9% (d) increases by 10.9%

**179**. A sphere is inscribed in a cone whose radius and height are 12 and 16 units, respectively. Then, the volume of the sphere is (a)  $216\pi$  (b)  $256\pi$  (c)  $288\pi$  (d)  $312\pi$ 





'cut here

**186**. An hourglass is formed from two identical cones. Initially, the upper cone is filled with sand and the lower one is empty. The sand flows at a constant rate from the upper cone to the lower cone. It takes exactly one hour to empty the upper cone. How long does it take for the depth of the sand in the lower cone to be half the depth of sand in the upper cone? (Assume that the sand stays level in both cones at all times)





**a**.150.2

**b**.151.2

с. 152.2

e. None of these

**d**. 153.2

**192.** A quadrilateral is obtained by joining the midpoints of the adjacent sides of the rhombus ABCD with angle A=60 degrees. This process of joining midpoints of the adjacent sides is continued definitely. If the sum of the areas of all the above said quadrilateral including the rhombus ABCD is  $64\sqrt{3}$  sq.cm., what is the sum of the perimeters of all the quadrilaterals including the rhombus ABCD? (in cm).





- **193.** ABCD is a parallelogram in which  $AB=6\sqrt{3}$  cm & BC=6 cm & angle ABC=120 degrees. The bisector<br/>of angles A, B, C & D from a quadrilateral PQRS. The area of PQRS in sq.cm. is<br/>a.  $18\sqrt{3}(2-\sqrt{3})$ b.  $18\sqrt{3}$ c.  $36/\sqrt{3}$ d.  $18(2-\sqrt{3})$ e. None of these
- **194.** In the given figure, EB is parallel & equal in length to DC, the length of ED is equal to the length of DC, the area of triangle ADC=8 units, the area of triangle BDC is 3 units. And angle DAB is right angle. Then the area of triangle AEB is



find the area of  $\triangle ADE$ .





**198.**  $\triangle$ DEF is right-angled triangle right angled at E. EG  $\perp$  DF. If DG = 8cm and GF= 2cm, then find the ratio of DE : EF.



- these **203.** ABCD is a parallelogram with AB = 21 cm, BC = 13 cm and BD = 14 cm. Find  $AC^2 + BD^2$  **a.** 1200 **b.** 1220 **c.** 1240
  - a. 1200
     b. 1220

     d. 1260
     e. None of these
- **204**. In the given figure, O is the centre of the circle and QT is a tangent. If the measure of  $\angle AQT = 45^{\circ}$  and AQ = 20 cm, then find the area of the  $\triangle$ QDR.





- 205. In a regular hexagon of side a cm, the mid-points of the three alternate sides are joined in order to form a triangle. What is the ratio of the area of the triangle such formed to area of the hexagon?
  a. 2:5 b. 7:8 c. 3:8 d. 1:2 e. 2:7
- **206**. In the figure given below, PQR and PST are tangents to the circle whose centre is 'O', touching the



**207**.A Square is inscribed in a circle of radius 'a' units and an equilateral △ is inscribed in a circle of radius '2a' units. Find the ratio of the length of the side of square to the length of the side of equilateral triangle.

| <b>a</b> . 1:3 | <b>b</b> . $\sqrt{2}:\sqrt{3}$ | <b>c.</b> 1: $\sqrt{3}$ <b>d.</b> 2:3 | <b>e.</b> 1: $\sqrt{6}$ |
|----------------|--------------------------------|---------------------------------------|-------------------------|
|----------------|--------------------------------|---------------------------------------|-------------------------|

**208**.In the given figure AMD, APQ and ASR are secants to the given circles. IF AM=4 cm, MD=6 cm and AS=5 cm, then find the length of line segment SR.





**209**. The sides EF and GH of a cyclic quadrilateral are produced to meet at P, the sides EH and FG are produced to meet at Q. If the measure of  $\angle EHG = 95^{\circ}$  and  $\angle GPF = 50^{\circ}$ , then find the measure of  $\angle GQH$ .



**210**.In the following figure, the measure of  $\angle PRQ = 45^{\circ}$  and  $\triangle PQR$  is right angled at Q. If RD = 3 units and  $QE = 5\sqrt{2}$  units, then find the length of PR.



**a.** 17 units

**b**. 20 units

c.  $20\sqrt{2}$  units d. 15 units

e. 16 units



- **211**.O is the centre of circle of radius 'r' units. AOB is a diameter and circles are drawn on OA and OB as diameters. If a circle is drawn to touch these three circles, then its radius will be
  - **a.**  $\frac{2r}{3}$  units **b.**  $\frac{r}{2}$  units **c.**  $\frac{r}{4}$  units **d.**  $\frac{r}{3}$  units **e.**  $\frac{3r}{4}$  units
- **212**. The area of a parallelogram PQRS is B sq. cm. The distance between PQ and SR is  $a_1'$ , cm and the distance between QR and PS is  $a_2'$  cm. Find the perimeter of the parallelogram PQRS.



**213**.In the figure given below, OMN is an octant of a circle having center at O. ABCD is a rectangle with AD = 6 cm and AB = 2 cm. Find the area of the octant of the circle.

- **a**.  $8\pi cm^2$  **b**.  $8.5\pi cm^2$  **c**.  $12\pi cm^2$ **e**.  $12.5\pi cm^2$
- **214.** In the following figure, ABCD is a rectangle and the measure of  $\angle ODC$  is  $60^{\circ}$ . If the radius of the circle circumscribing the rectangle ABCD is 'a' units, then find the area of the shaded region.



**215**. The areas of the three faces of a cuboid are in the ratio of 1:3:4 and its volume is 144 cu. Cm. Find the length of its longest diagonal.

| <b>a.</b> 17 cm | <b>b</b> . 21 cm | <b>c</b> . 12 cm | <b>d</b> . 24 cm | <b>e</b> . 13 cm |
|-----------------|------------------|------------------|------------------|------------------|
|                 |                  |                  |                  |                  |

216.A regular prism of length 15 cm is cut into two equal halves along its length, So that the cutting pane passes through two opposite vertices of the hexagonal base. Find the surface area of one of the resultant solids if one side of the hexagon measures 6 cm.
a. 580 sq.cm
b. 543 sq.cm
c. 486 sq.cm
d. 593 sq.cm
e. 523 sq.cm


- **217**.Sum of the radius of the base and the height of a solid cylinder is 12cm. If the total surface area of the cylinder is  $96\pi sq.cm$ , then find the height of the cylinder
  - **a**.6 cm **b**.8 cm **c**.10 cm **d**.4 cm **e**. None of these
- **218**.A cone has a height h and base radius r. The volume of the cone is bisected by a plane parallel to the base which is at a distance of k from the base. Find the value of k.
  - **a.**  $\frac{1}{2}h$  **b.**  $\left(\frac{1}{2}\right)^{\frac{1}{2}}h$  **c.**  $\left(\frac{1}{2}\right)^{\frac{1}{3}}h$  **d.**  $\left(1-\left(\frac{1}{2}\right)^{\frac{1}{3}}\right)h$  **e.** None of these

219. A hollow conical flask of base radius 12cm and height 8cm is filled with water. If that flask is emptied into a hemispherical bowl of same base-radius, then what portion of the bowl will remain empty?
a. 65%
b. 33.33%
c. 35%
d. 66.66%
e. 75%

**220.** In the given figure, ABCD is a rectangle which is divided into four equal rectangles by EF, GH, and IJ. If BC =3 cm and AB=8 cm then KL=?



**221**. PQRS is a square. Arc PR and QS are drawn on the square PQRS with centre at S and R respectively. Find the ratio of shaded area to area of square PQRS.



**222.** Area of  $\triangle$ DEF=10 square units. Given EI : IF = 2 : 3 and area of  $\square$ GHFI = Area of  $\triangle$  EFH. What is the area of  $\triangle$  EFH.





**225.** ABCD is a trapezium with CD || AB and CD is a tangent to the circle. As shown in the figure. AB is a diameter of the circle. E & F are mid points of AD & BC respectively. What is the  $\angle ABC = ?$ 



| <b>a.</b> 55° | <b>b.</b> 65 <sup>°</sup> | <b>c.</b> 75° | <b>d.</b> 85° | e. None of these |
|---------------|---------------------------|---------------|---------------|------------------|
|               |                           |               |               |                  |

**226.** A right circular cone of height 10 cm is divided into three parts by cutting the cone by two plane parallel to the base at a height of 2 cm & 5 cm from the base respectively. Find the ratio of  $V_1: V_2: V_3 = ?$ 



**Direction for questions 263 and 264**: Answer the questions on the basis of the information given below.

A punching machine is used to punch a circular hole of diameter 4 units from a sheet of steel that is in the form of an equilateral triangle of side  $4\sqrt{3}$  units as shown in the figure given below. The hole is punched such that it passes through one vertex B of the triangular sheet and the diameter of the hole originating at B is in line with the median of the sheet drawn from the vertex B.



**227**. Find the area (in square units) of the part of the circle (round punch) falling outside the triangular sheet.

**a.**  $\frac{8\pi}{3} - \sqrt{3}$  **b.**  $\frac{4\pi}{3} - \sqrt{3}$  **c.**  $2\left(\pi - \sqrt{3}\right)$  **d.**  $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$  **e.**  $\frac{8\pi}{3} - 2\sqrt{3}$ 

228. The proportion of the sheet area that remains after punching is

**a.**  $\frac{17\sqrt{3}-2\pi}{18\sqrt{3}}$  **b.**  $\frac{15\sqrt{3}-3\pi}{12\sqrt{3}}$  **c.**  $\frac{11\sqrt{3}-2\pi}{9\sqrt{3}}$  **d.**  $\frac{8\sqrt{3}-3\pi}{6\sqrt{3}}$  **e.**  $\frac{15\sqrt{3}-2\pi}{18\sqrt{3}}$ 

**229.** If two parallel sides of a trapezium are 60 cm & 77 cm & other non-parallel sides are 25 cm & 26 cm then the area of the trapezium is



**a**. 1724

76



triangular part are 8 sq unit, 5 sq unit & 10 sq unit. What is the area of the remaining part (in sq units)?



**232**. The quarter circle has centre C & radius=10. If the perimeter of rectangle CPQR is 26, then the perimeter of APRBQA is



- a. 7.5
   b. 7
   c. 7.75
   d. 7.25
   e. None of these
- **236.** In the adjoining figure ABCD is a cyclic quadrilateral with AC  $\perp$  BD and AC meets BD at E. Given that  $EA^2 + EB^2 + EC^2 + ED^2 = 100cm$ , find the radius of the circumscribed circle.





**237.** Let  $S_1$  be a square of side a. Another square  $S_2$  is formed by joining the mid-points of the sides of  $S_1$ . The same process is applied to  $S_2$   $A_2, A_3, \dots$  be the areas and  $P_1, P_2, P_3, \dots$  be the perimeters



- **b.**  $2(2-\sqrt{2})/a$
- **c.**  $2(2+\sqrt{2})/a$
- **d.**  $2(1+2\sqrt{2})/a$
- e. None of these

**238.** In the figure below, ABCDEF is a regular hexagon and  $\angle AOF = 90^{\circ}$ , FO is parallel to ED. What is the ratio of the area of the triangle AOF to that of the hexagon ABCDEF?



**239**. Consider a circle with unit radius. There are seven adjacent sectors,  $S_1, S_2, S_3, \dots, S_7$ , in the circle such that circle. Further, the area of the jth sector is twice that of the (j-1)th sector, for j=2,...,7. What is the angle, in radius, subtended by the arc of  $S_1$  at the centre of the circle?

**a.** 
$$\frac{\pi}{508}$$
 **b.**  $\frac{\pi}{2040}$  **c.**  $\frac{\pi}{1016}$  **d.**  $\frac{\pi}{1524}$  **e.** None of these

**240**. PQRS is a square. SR is a tangent (at point S) to the circle with centre O and TR = OS. Then, the ratio of the area of the circle to that of the square is



**a.** 
$$\frac{\pi}{3}$$
 **b.**  $\frac{11}{7}$  **c.**  $\frac{3}{\pi}$  **d.**  $\frac{7}{11}$  **e.** None of these

**241.** Let C be a circle with centre  $P_o$  and AB be a diameter of C. Suppose  $P_1$  is the midpoint of the line segment  $P_o$  B,  $P_2$  is the mid point of the line segment P, B and so on. Let  $C_1, C_2, C_3, ...$  be circles with diameters  $P_oP_1, P_1P_2, P_2P_3$ ... respectively. Suppose the circles  $C_1, C_2, C_3, ...$  are all shaded. The ratio of the area of the unshaded portion of C to that of the original circle C is a. 8:9 b. 9:10 c. 10:11 d. 11:12 e. None of these

- **242.** A right triangle contains a  $60^{\circ}$  angle. If the measure of the hypotenuse is 4, find the distance from the point of intersection of the 2 legs of the triangle to the point of intersection of the angle bisectors.
- **243.** Square ABCD is inscribed in a circle. Point E is on the circle. If AB = 8. Find the value of  $(AE)^2 + (BE)^2 + (CE)^2 + (DE)^2$ .



- **244**. Radius  $\overline{AO}$  is perpendicular to radius  $\overline{OB}$ ,  $\overline{MN}$  is parallel to  $\overline{AB}$  meeting  $\overline{AO}$  at P  $\overline{OB}$  at Q, and the circle at M and N. If MP =  $\sqrt{56}$ , and PN = 12, find the measure of the radius of the circle.
- **245**. In circle O, perpendicular chords  $\overline{AB}$  and  $\overline{CD}$  intersect at E so that AE = 2, EB = 12, and CE = 4. Find the measure of the radius of circle O.
- **246.** A circle with radius 3 is inscribed in a square. Find the radius of the circle that is inscribed between two sides of the square and the original circle.



**247.**  $\overline{AB}$  is a diameter of circle O, as shown in Fig. 24. Two circles are drawn with  $\overline{AO}$  and  $\overline{OB}$  as diameters. In the region between the circumferences, a circle D is inscribed, tangent to the three previous circles. If the measure of the radius of circle D is 8, find AB.



- **248.** A circle is inscribed in a quadrant of a circle of radius 1 unit. What is the area of the shaded region?
- **249**.In the figure given below,  $\triangle ABC$  is circumscribed by a circle with center O. A tangent is drawn touching the circle at C, such that  $\angle BCE = 60^{\circ}$ . If AB = BC = 4cm, then find the area of shaded portion.





- 1. Exterior angle =  $180 178 = 2^{\circ}$  $\Rightarrow \frac{360^{\circ}}{n} = 2 \text{ so } \frac{180^{\circ}}{n} = 1^{\circ}$
- 2. As all the sides of a regular hexagon makes an equilateral  $\Delta$  with the centre of hexagon so AB = 2a, where a is the side of each hexagon.  $\Rightarrow 2a = 2r = 2 \times 6 \Rightarrow a = 6.$ So area of the hexagon =  $\frac{3\sqrt{3}}{2}6^2 = 54\sqrt{3}.$

13

12

- 3. Perimeter of the rhombus = 4a = 52  $\Rightarrow a = 13$ cm. one diagonal = 24cm.  $\Rightarrow \frac{1}{2}$  (other diagonal) =  $\sqrt{13^2 - 12^2}$  = 5cm. So length of the other diagonal =  $5 \times 2 = 10$ cm.
- **4.** Area of rhombus =  $\frac{1}{2} d_1 d_2 = \frac{1}{2} \cdot 6 \cdot 10 = 30 sqcm$
- **5.** Distance covered by smaller circle in 4 revolution =  $4 \times 2.\pi.30 = 240\pi$ Circumference of bigger circle =  $2.\pi.40 = 80\pi$

So revolutions taken =  $\frac{240\pi}{80\pi} = 3$ 

6. Perimeter of the hexagon = 12cm = 6a $\Rightarrow a = 2cms$ .

So area =  $\frac{3\sqrt{3}}{2}.2^2 = 6\sqrt{3}.$ 

- **7**. Sum of all the angles of a pentagon =  $(5 2) \times 180^{\circ} = 540^{\circ}$  $\Rightarrow 10x + 10y = 540^{\circ}$   $\Rightarrow x + y = 54^{\circ}$
- **8.** Each angle of a regular polygon =  $\frac{(n-2)180^{\circ}}{n} = 177^{\circ}$  $\Rightarrow$  n = 120



в

- **9**. Because the two figures are similar, all cones angles would be equal. Hence  $\angle J = \angle A = 120^{\circ}$
- **10**. Interior  $\angle$  + Exterior  $\angle$  = 180° always.
- **11.** Sum of two consecutive angles of a  $\Pi$ gm is 180°. Hence  $2x+y+x+2y = 1800 \implies x + y = 60^{\circ}$
- **12.** Mid segment  $13 = \frac{10+a}{2} \Rightarrow a = 16$





Area of a trapeze =  $\frac{1}{2}(10+16)h = 52$   $\Rightarrow h = 4cm.$ As AB = EF = 10, CE = FD =  $\frac{(16-10)}{2} = 3cm.$  $\therefore AC = \sqrt{AE^2 + CE^2} = \sqrt{4^2 + 3^2} = 5cm.$ 

Hence perimeter = 10+5+16+5 = 36cms.

**13.** BC = 
$$\sqrt{12^2 + 16^2} = 20cm$$

∴ radius of circle = 10cm (∴ angle in a semi circle is 90°) ∴ circumference =  $2\lambda . 10 = 20\lambda cm$ 

**14**.Diagonal of a sq with side a = 
$$a\sqrt{2}$$
  
 $\therefore a\sqrt{2} = 8$   $\Rightarrow$  a =  $-\frac{8}{\sqrt{2}} = 4\sqrt{2}$ 

Hence area =  $(4\sqrt{2})^2 = 32 = 2^5$ . Hence K = 5.

**15**.AS area of original square =  $(2x)^2 = 4x^2$ .  $\Rightarrow$  area of square cut out =  $x^2$ . So each of side = x cm. Hence perimeter of rem. Figure = 8x cm.

**16**.Length of AB = 
$$2\lambda r \frac{M}{360^\circ} = 8\lambda$$

$$\Rightarrow$$
 r,  $\frac{M}{360^{\circ}} = 4$ .

Area of the sector =  $\lambda r^2 \frac{M}{360^0} = 48\lambda$ .

$$\Rightarrow \frac{M}{360^{\circ}} = \frac{1}{3} \qquad \Rightarrow M = 120^{\circ}.$$
  
Hence
$$\left(\frac{M}{r}\right) = \frac{120}{12} = 10.$$

17. In the figure shown below, ABCDEF is the hexagon, with vertices A and D lying on the x-axis, and midpoints of sides BC and EF lying on the y-axis. If we rotate the portion ABGO about the x-



http://www.totalgadha.com

С

**1**16

2x

12

2x

х

x

х

х



в

axis we would get a cylinder with a cone at the top. The radius OG of the cylinder would be the side of the hexagon and height BG would be a/2. The same would be true for the cone.

Therefore, the volume =  $\pi a^2 \frac{a}{2} + \frac{1}{3}\pi a^2 \frac{a}{2} = 2\pi \frac{a^3}{3}$ If the portion is rotated about the y-axis, a frustum would be formed of height a, and radii of a and a/2, respectively. The volume =  $\frac{\pi a}{3} \left( a^2 + \frac{a^2}{4} + \frac{a}{2} \right) = \frac{7\pi a^3}{12}$ . Ratio =  $\frac{8}{7} \Rightarrow \text{Ratio}^2 = \frac{64}{49}$ 

¢.

**18.** Area of smaller circle = 
$$\pi r^2 = \pi$$
  
 $\Rightarrow r = 1$  cm.  
So side of square = 2cm.  
Diameter of bigger circle = Diagonal of the square =  $2\sqrt{2}$ .  
So are of bigger circle =  $\pi \left(\frac{2\sqrt{2}}{2}\right)^2 = 2\pi cm$ .  
**19.** If r is the radius of the circle  
 $\Rightarrow A = r \times 5$ ,  $s = \frac{4+6+8}{2} = 9cm$ ,  $A = \sqrt{9.5.3.1} = 3\sqrt{15}$   
 $3\sqrt{15} = r \times 9 \Rightarrow r = \sqrt{\frac{5}{3}} cms$   
Area of the circle =  $\pi \cdot \frac{5}{3}$   
**20.** Area =  $\frac{\sqrt{3}}{4}a^2 = 100\sqrt{3} \Rightarrow a^2 = 400 \Rightarrow a = 20$   
The perimeters of every next triangle would be half of its previous  
triangle. Therefore sum of perimeters =  $3 \times 20 \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ....\right) = \begin{bmatrix} 20 & \sqrt{10} & \sqrt{20} \\ 10 & \sqrt{10} & \sqrt{20} \\ 10 & \sqrt{10} & \sqrt{20} \end{bmatrix}$   
**21.** In a 30-60-90 triangle, the side opposite to 30° is half the hypotenuse.

**21**.In a 30-60-90 triangle, the side opposite to  $30^{\circ}$  is half the hypotenuse. 2a-a= 2002 a= 2002 Therefore longest side= 2a= 4004







- **26**. In a triangle sum of two sides > third side, keeping this in mind we form the following triangles: (20, 30, 40), (20, 40, 50), (20, 50, 60), (30, 40, 50), (30, 40, 60), (30, 50, 60), (40, 50, 60). Therefore 7 triangles.
- 27. For an acute- angled triangle, square of any side is less than the sum of the squares of the other two sides. 10<sup>2</sup> + 24<sup>2</sup> > n<sup>2</sup> and n<sup>2</sup> + 10<sup>2</sup> > 24<sup>2</sup>....
  ⇒ n< 26 and n > √476. The values of n satifying the above conditions are 22, 23, 24 and 25. Therefore 4 values.
- **28**. & **29**. as we can see, D is 3km east and  $\sqrt{3}$  north of A. The total distance walked by the person =  $2 \times BD+BE= 6km$





**30.** The triangles possible are (1, 3, 3), (2, 2, 3). Others triangles are not possible as sum of two sides will not be greater than the third side.

- **31**. The new area =  $\frac{1}{2} \times 1.1 \times base \times 0.9 \times height$  = original area ×0.99. Therefore the area decreases by 1.1.
- **32.** Area of the triangle ABD=  $\frac{1}{2} \times base \times$  height=  $\frac{1}{2} \times 3 \times 6 = 9$  units.



**35.** In the given triangle, as the height for triangle ABD and ADC is the same, the ratio of the areas of the two triangles are in the ratio of their bases.

$$\frac{Area \ \Delta ABD}{Area \ \Delta ADC} = \frac{BD}{DC} = \frac{8}{12} = \frac{2}{3}$$
Therefore area  $\Delta ABD = \frac{2}{5} \times area \ \Delta ABC = \frac{2}{5} \times 60 = 24$ 
36. Let  $\angle ADX = \angle AXD = \infty \Rightarrow \angle XAD = 180^{\circ} - 2\infty$ 
Let  $\angle CYD = \angle CDY = \beta \Rightarrow \angle DCY = 180^{\circ} - 2\beta$ 
 $\angle XAD + \angle DCY = 90^{\circ}$ 
 $180^{\circ} - 2\infty + 180^{\circ} - 2\beta = 90^{\circ} \Rightarrow \infty + \beta = 135^{\circ}$ 
 $\Rightarrow \angle XDY = 180^{\circ} - (\infty + \beta) = 45^{\circ}$ 

http://www.totalgadha.com







$$\Rightarrow \frac{\mathsf{EF}}{\mathsf{EC}} = \frac{\mathsf{FA}}{\mathsf{BC}} \Rightarrow \frac{\mathsf{y}}{\mathsf{y}+\mathsf{8}} = \frac{2}{\mathsf{5}} \Rightarrow \mathsf{y} = \frac{16}{\mathsf{3}}$$

**49**. Let PQ be the height of the intersection of wires. Let BQ= x and DQ = y.







c

ь

51. Tangents drawn to a circle from the same point are equal in length.

 $\begin{array}{l} \Rightarrow \mathsf{OE} = \mathsf{DG} = \mathsf{DF} = x \ (\mathsf{say}) \\ \Rightarrow \mathsf{FC} = \mathsf{HC} = y \ (\mathsf{say}) \ \mathsf{AI} = \mathsf{AE} = \mathsf{AH} = z \\ \mathsf{BG} = \mathsf{BI} = \mathsf{R} \ (\mathsf{say}) \\ \mathsf{Now} \ \mathsf{AB} + \mathsf{BC} + \mathsf{CA} = \mathsf{k} + \mathsf{z} + \mathsf{k} + \mathsf{zx} + \mathsf{y} + \mathsf{z} + \mathsf{y} = 2(\mathsf{k} + \mathsf{x} + \mathsf{y} + \mathsf{z}) \\ \Rightarrow 40 = 2(\mathsf{k} + \mathsf{x} + \mathsf{y} + \mathsf{z}) \Rightarrow \mathsf{x} + \mathsf{y} + \mathsf{z} + \mathsf{k} = 20 \\ \mathsf{z} + \mathsf{k} = \mathsf{AB} = 12 \Rightarrow \mathsf{x} + \mathsf{y} = \mathsf{CD} = 20 - (\mathsf{z} + \mathsf{k}) = 20 - 12 = 8 \end{array}$ 

**52.** We draw a perpendicular GF from the vertex G of the square on the side AB.

 $\Delta \text{EFG}$  and  $\Delta \text{EBD}$  are congruent (three angles equal and one side equal)

 $\Rightarrow$  EF = y and FG = x Now FG = AF ( $\angle$ FAG =  $\angle$ AGF = 45°)





k

в

E

С

G<sup>×</sup>D× F Y

 $\Rightarrow$  AF = x Therefore one side of the right triangle = 2x + y. The other side is also equal to 2x + y  $\Rightarrow$  Area of

the triangle =  $\frac{(2x + y)^2}{2}$ Area of the square =  $x^2 + y^2$ Ratio =  $\frac{x^2 + y^2}{(2x + y)^2} = 2:5$ 

**53.** Let's join A to R, B to P, and C to Q. The median divide the triangle into two equal areas. QC, AR, BP are medians in also  $\triangle$ QBR,  $\triangle$ PCR and  $\triangle$ APQ, Also PC, BR, AQ are medians in triangle PBR, AQR, PQC. Equating the areas formed by medians, we can see Area  $\triangle$ PQR = 7area  $\triangle$ ABC = 70cm<sup>2</sup>.



57. Here





Have a look at the picture. Since everything is symmetrical, triangle PQR is also equilateral (I can prove it also, but take this for granted right now). Let PE = DQ = RF = x, and PB = AQ = RC = y.

Draw perpendicular AS.

$$BS = \frac{a}{2} \Rightarrow ES = BS - BE = \frac{a}{2} - \frac{a}{3} = \frac{a}{6}$$
$$AS = \frac{\sqrt{3}a}{2}$$
$$\Rightarrow AE = \sqrt{ES^2 + AS^2} = \frac{\sqrt{7}a}{3}$$

∆BPE and ∆ABE are similar [three angles equal]

$$\Rightarrow \frac{BP}{AB} = \frac{PE}{BE} = \frac{BE}{AE}$$
  

$$\Rightarrow \frac{y}{a} = \frac{x}{a/3} = \frac{a/3}{\sqrt{7}a/3} \Rightarrow y = 3x \text{ and } y = \frac{a}{\sqrt{7}}$$
  
Now  $AE = \frac{\sqrt{7}a}{3} = y + x + PQ = \frac{a}{\sqrt{7}} + \frac{a}{3\sqrt{7}} + PQ$   

$$\Rightarrow PQ = \frac{\sqrt{7}a}{3} - \left(\frac{a}{\sqrt{7}} + \frac{a}{3\sqrt{7}}\right) \Rightarrow PQ = \frac{a}{\sqrt{7}}$$
  

$$\Rightarrow \frac{Area}{Area} \frac{\Delta PQR}{\Delta ABC} = \frac{PQ^2}{AB^2} = \frac{1}{7}$$

**58.**  $\triangle AJK$ ,  $\triangle AHI$ ,  $\triangle AFG$ ,  $\triangle AOE$  and  $\triangle ABC$  are similar  $\frac{AJ}{JK} = \frac{AH}{HI} = \frac{AF}{FG} = \frac{AD}{DE} = \frac{AB}{BC}$   $\Rightarrow JK : HE : FG : DE : BC = 1: 2 : 3 : 4: 5$   $\Rightarrow Area \triangle AJK : \triangle AHI : \triangle AFG : \triangle ADE : ABC = 1: 4: 9: 16: 25$ Therefore areas of the parts in between = 1: 3: 5: 7: 9 Are of the largest part = 9x = 27 \Rightarrow x = 3  $\Rightarrow Area of triangle = 25 \times 3 = 75$ 











**60**.



65. We draw a line PS parallel to QR and meeting MO at S.





$$\begin{array}{l} \Delta \text{RNO and } \Delta \text{PSO are similar} \\ \Rightarrow \frac{\text{OP}}{\text{ON}} = \frac{\text{OS}}{\text{OR}} \Rightarrow \frac{\text{OS}}{\text{OR}} = \frac{1}{2} \Rightarrow \text{OS} = \text{SR} \\ \Delta \text{MQR and } \Delta \text{MPS are similar} \\ \Rightarrow \frac{\text{MQ}}{\text{MP}} = \frac{\text{MR}}{\text{MS}} \Rightarrow \frac{\text{MR}}{\text{MS}} = \frac{1}{2} \Rightarrow \text{MR} = \text{SR} \Rightarrow \text{MR} = \text{RS} = \text{SO} \Rightarrow \text{MR} = 10 \end{array}$$



 $\Rightarrow \frac{PD}{QD} = \frac{DE}{QE} = \frac{1}{4} \Rightarrow QD = 4PD$ Now QD = DR  $\Rightarrow$  DR = 4PD Now DE is the angle bisector in  $\triangle PDR$  $\frac{DR}{DP} = \frac{RF}{FP} \Rightarrow \frac{RF}{FP} = 4 \Rightarrow RF = 10$ 



**75.**  $MP^2 + QO^2 = MN^2 + NP^2 + QN^2 + NO^2$ 



$$= MN^{2} + \frac{NO^{2}}{4} + \frac{NO^{2}}{4} + NO^{2}$$
  
= 5 (MN<sup>2</sup> + NO<sup>2</sup>)/4  
= (5 × 20<sup>2</sup>)/4= 500



**80.**  $x = \sqrt{(9+16)^2 - (16-9)^2} = 24$ cms.







 $\mathbf{O}^{i}$ 

Required area = 
$$\pi \left( (r_1 + r_2)^2 - r_1^2 - r_2^2 \right)$$
  
=  $\pi (2r_1r_2)$   
=  $32 \pi$   
85. Let the no. of sides are x & 12 - x.  
No. of diagonals =  $\frac{x(x-1)}{2} - x + \frac{(12 - x)(12 - x - 1)}{2} - (12 - x) = 19$   
Solving for x, we get x = 7 or 5.  
Hence S<sub>1</sub> & S<sub>2</sub> are heptagon & pentagon.  
86. Let radius of circle A & B are r<sub>1.8</sub> r<sub>2</sub> respectively  
Hence  $2\pi r_1 \frac{45^{\circ}}{360^{\circ}} = 2\pi r_2 \frac{30^{\circ}}{360^{\circ}}$   
 $\Rightarrow \frac{r_1}{r_2} = \frac{2}{3}$   
Hence ratio of the areas of A & B is  $\pi r_1^2 : \pi r_2^2 \pm 2^2 : 3^2 = 4 : 9$   
87. AD = 2 + 2 = 4 cm.  
 $CD = 2 \text{ cm.}$   
 $ADC = 120^{\circ}$   
Hence Area of 11 gm = 4, 2, 5 in 120° =  $4\sqrt{3}cm^2$   
Also area = 4. b =  $4\sqrt{3} \Rightarrow b = \sqrt{3}cm$ .  
D0 =  $\sqrt{4 + h} = 1cm$ .  
Hence AC =  $\sqrt{5^2 + (\sqrt{3})^2} = \sqrt{28} \pm 2\sqrt{7}cms$ .  
88. AP. PB = DP. PC  
PD = 30  
Let O be the Center of circle OC, & OB' are  $\bot$ 's on CD & AB  
Respect & bisect them.  
Hence CC = C'D = 27  
AB' = BB' = 28  
PC' = OB' = 30 - 27 = 3  
Hence perimeter of the circle =  $2\pi\sqrt{793}$ 

**89.** Area of the inner square is  $\frac{4}{5^{th}}$  of outer square i.e. area of the 4 right angled





Triangles together is  $\frac{1}{5^{th}}$  of outer square  $\Rightarrow \frac{1}{5}(x+y)^2 = 4\left(\frac{1}{2}xy\right)$ X  $(x+y)^2 = 10 xy$ Solving we get  $\frac{x}{y} = 4 \pm \sqrt{15}$  Hence c or d.



**93.** As all the points are equally spaced hence angle formed at the centre by

Every two consecutive points is  $\frac{360^{\circ}}{10} = 36^{\circ}$ , Hence  $\angle A_1OAS = 36 \times 4 = 144^{\circ}$ In  $\triangle OA_1A_5$  OA<sub>1</sub> = OA<sub>5</sub> (radius)





Hence 
$$\angle OA_1A_5 = \angle OA_5A_1$$
  
So  $\angle OA_5A_1 = \frac{180^\circ - 144^\circ}{2} = 18^\circ$ 





$$2.DD'' = \frac{4}{3} \cdot \frac{l}{2}$$
$$2. \frac{(2-l)}{2} = \frac{2}{3}l$$
$$\rightarrow l = \frac{6}{5}cm.$$

Hence Perimeter of BEFG =  $2\left(\frac{3}{5} + \frac{4}{3}\right) = \frac{58}{15}cm$ 

**97.** If three circles touch the other circles in a row & have two direct common targets then their radio are in G.P series



**101.** Let the sides of square & equation D are 3x & 4x respectably such that they have equal evens. For the circle circumscribes the square

Radius = 
$$\frac{1}{2}(diagonal) = \frac{1}{2}(3\sqrt{2}x) = \frac{3x}{\sqrt{2}}$$
  
Also in radius of equation D =  $\frac{4x}{2\sqrt{3}}$   
 $\Rightarrow$  Ratio of areas =  $\left(\frac{3x}{\sqrt{2}}\right)^2 \lambda : \left(\frac{4x}{2\sqrt{3}}\right)^2 \lambda$   
 $\Rightarrow 27:8$   
102. Answer 12.  
103. Let the hexagon ABCDEF be inscribed in a circle. Let the x and y subtend angles  $a$  and  $\beta$  at the center O, respectively.  $3a + 3\beta = 360^{-10} + a + \beta = 120^{-10} + \beta = 120^{-10}$   
 $\Rightarrow \angle AOE = 120^{-10}$   
In  $\triangle AOE \cos 120 = \frac{r^2 + t^2 - AE^2}{2r^2}$   
 $\angle AFE = \frac{180 - \alpha}{2} + \frac{180 - \beta}{2} = 120^{-10}$   
In  $\triangle AFE \cos 120 = \frac{x^2 + y^2 - AE^2}{2xy}$   
Eliminate AE from both the equation to get the answer.  
104. AS the according to the property circles the touching point & contres of circles should be collinear. Hence all O, AB should be collinear.  
Also  $AB = \frac{1}{2}$  (diameter of bigger circle)  
 $= 5 \text{ cm}$   
So  $OAB = OA + OB + AB = AB + AB = 5 + 5 = 10 \text{ cm}.$ 



100

**106**. Find the radius of each circle and determine the order. Remember that it's an isosceles right triangle with 45- 45- 90 angles.



с

B

н



 $B = 9 \text{ cm } (i.e.\sqrt{81})$ Side of C = (9+1) = 10cms. Also side of G = side of B - side of A = 9-1 = 8cm. Side of F = side of g - side of A = 8-1 = 7cm. Side of H = side of G + side of F = (8+7) = 15cms. Also side of (B+C) = side of (E + F + G) Side of E = side of (B + C) - (F + G) = (9 + 10) - (8 + 7) = 4cm. Side of I = side of (H+F) - side of E = (15+7) - 4 = 18cms. So Area of I = 18<sup>2</sup> = 324cm<sup>2</sup>

**115**. The distance traveled by Ant would be minimum if it travels as in the figure.

So total distance = 
$$\frac{1}{4}(2.\pi.1) + 1 + \frac{1}{4}(2\pi.1)$$
  
=  $(\pi + 1)$  meteres.

- **116**. CD = 17cm (given)
  - EC = 8cm (given)  $\Rightarrow DE = \sqrt{17^2 - 8^2} = 15 \text{ cms.}$

Also DEC & DHA are congruent hence DH = 8  $\Rightarrow$  Side of square = (15-8) = 7cms.

So area of required square =  $7^2 = 49 cms^2$ 

**117**. The area grazed by the cow is I + II + III + IV

(I + II) is a sector of circle with radius 50m and angle 270°.

So Area = 
$$\pi .50^2 \cdot \frac{270}{360} = 1875\pi m^2$$

Area III is a sector of circle with radius 210 m and angle  $90^{\circ}$  .

So Area = 
$$\pi . 20^2 \cdot \frac{90}{360} = 100\pi m^2$$

Similarly Area IV =  $\pi .30^2 \cdot \frac{90}{360} = 225\pi m^2$ ,

So Required Area = 
$$1875 + 100 + 225 = 2200 m$$

**118**. Let O &  $O_1$  are centers of the two circles. OM  $\downarrow$ 

$$O_1$$
 N  $\perp$  BC.

OR 
$$\perp$$
 AB, OP  $\perp$  AC,  $O_1 Q \perp$  AC.  
In similar triangle's OMC &  $O_1 NC$   
We have OM = 4cm,  $O_1 N$  = 1cm.  
Also MN = PQ =  $\sqrt{(1+4)^2 - (4-1)^2}$  =4cms.  
 $\Rightarrow NC = \frac{4}{3}$  cms.  $\Rightarrow CQ = \frac{4}{3}$  cms.  
In square BROM, BR = BM = 4cms.



http://www.totalgadha.com

103

BC,

Let AR = AP = x cms. So in  $\triangle ABC$ ,  $AB^2 + BC^2 = AC^2$  $(4+x)^2 + (4+4+\frac{4}{3})^2 = (x+4+\frac{4}{3})^2$ x = 28cms.  $\Rightarrow AB = 28 + 4 = 32.$ 



**122.** For an acute angled  $\Delta$  with sides a, b, c

 $a^2 < b^2 + c^2$ 

(i.e. sum of the squares of any two sides is always greater than the square of the third side). So, the sides satisfying the above condition are 11, 60, 59 & 11, 60, 60 only. Hence Answer 2.

**123**. The ratio of the base areas for the two cylinders is  $1^2 : 3^2 = 1:9$ .



Now as the empty space will have the same volume in the both the cases, so the height of empty space in the smaller cylinder shaved be 9 times that of the bigger cylinder. Let 'h' is the height of empty space in bigger cylinder, so 9h mill be that of smaller one. 20 + 9h = 28 + hh = 1 cm.So height of the bottle = (28 + 1) = 29cms. 124. OM & ON are perpendiculars on AB & BC respectively. С As AB = BCOM = ON = x (say)In  $\triangle OMB (OM)^2 + (MB)^2 = (OB)^2$  $x^{2} + x^{2} = \left(\frac{1}{2}\right)^{2} \Rightarrow 2x^{2} = \frac{1}{4} \Rightarrow x = \frac{1}{2\sqrt{2}} cms.$ Now, in ∆OAM  $\left(AM\right)^2 + \left(OM\right)^2 = 1^2$  $AM^{2} = 1 - \frac{1}{\left(2\sqrt{2}\right)^{2}} = AM \frac{\sqrt{7}}{2\sqrt{2}}.$  $AB = \frac{\sqrt{7}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{7} + 1}{2\sqrt{2}}$ 125. DE || AB Let 'O' is centre of circle. OF  $\perp$  AB, OG  $\perp$  DE F & G are the midpoints of AB & DE respect. Also As DP = 6, FG = 6. Also  $AB = 17+4=21 \Rightarrow AF=10.5$ Now in ∆AFO  $\left(OA\right)^2 = AF^2 + \left(OF\right)^2$  $\Rightarrow$   $r^2 = (10.5)^2 + (OF)^2$  $\Rightarrow \qquad OF^2 = \frac{441}{4} - r^2$ In  $\triangle$ ODG, DG = PF = (10.5 - 4)=6.5 So  $OD^2 = OG^2 + GD^2$  $r^{2} = \left(\sqrt{\frac{441}{4} - r^{2}} + 6\right)^{2} + (6.5)^{2}$ Solving above  $eq^4$ . We get  $r = \frac{65}{6}$ . **126.** Let  $O_1, O_2$  be the centers of circle 1 & 2. In similar triangle's  $AO_2F$  & ABC,  $\frac{AO_2}{AB} = \frac{O_2F}{BC}$ 



$$\Rightarrow O_2 F = \frac{3.1}{5} = \frac{3}{5}$$
  
In  $\Delta O_2 EF$ ,  $EF = \sqrt{1^2 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$   
DE=  $2 \cdot \frac{4}{5} = \frac{8}{5} cms$ .



Hence AC =  $2(3+1.5) = 9 \Rightarrow AG = (9-6) = 3cm$ .





**130.** O is the centre of the circle circumscribing the  $\triangle PQR$ .



http://www.to



 $\angle BOC = \angle BCO = Y$  (:: BO = AO = BC)  $\therefore \angle OBC = 180 - 2Y$  $\therefore \angle OBA = 2Y = \angle OAB \qquad \angle \because B$ Now From ∆AOC  $\angle AOC = 180^{\circ} - 3Y$ and  $180^{\circ} - 3Y + X = 180^{\circ}$ or X = 3Y

135. From the figure




http://www.totalgadha.com

BC = 
$$\sqrt{13}$$
  
BD =  $\frac{4}{7}\sqrt{13}$  & DC =  $\frac{3}{7}\sqrt{13}$   
 $\frac{SinB}{33} = \frac{SinA}{\sqrt{13}} \Rightarrow SinB = \frac{3\sqrt{3}}{2\sqrt{13}}$   
now From AADB  
 $\frac{Sin30^{\circ}}{BD} = \frac{SinB}{AD} \Rightarrow \frac{1 \times 7}{2 \times 4\sqrt{13}} = \frac{3\sqrt{3}}{2\sqrt{13}} \times \frac{1}{AD}$   
 $\Rightarrow AD = \frac{12\sqrt{3}}{7}$   
**139.**  $\Delta$ MCN is a right angle triangle.  
 $\therefore$  area of  $\Delta$ MCN =  $\frac{1}{2} \times 15 \times 20 = \frac{1}{2} \times 25 \times CD$   
 $\Rightarrow CD = \frac{15 \times 20}{25} = 12$   
 $\therefore$  length of common Chord CD =  $2 \times CO = 24$  a.  
**140.** Area of  $\triangle$  BEC =  $2 \times \triangle$ ABC =  $14cm^2$   
Area of  $\square$  BEC =  $13 \times Area$  of  $\square$  ABEC =  $14 + 42 = 56cm^2$   
**141.**  $\angle ADC = 180^{\circ} - \angle CBA$   
(cyclic quadiletral)  
 $D = \frac{10^{\circ}}{2} = 110^{\circ}$   
From  $\triangle$ ACD  
 $\angle ACD = 180^{\circ} - (\angle CDA + \angle CAD)$ 

 $(\angle CDA + \angle$ = 180° -110° - 30° = 40°



**142.**  $\angle OCA = 90^{\circ}$  (angle between tangent and radius) and AB is a chord of outer circle



http://www.totalgadha.com

**145.** PR = PB + RA - AB = 
$$20 + 20 - 5 = 35$$
  
Similarly RQ =  $40 - 10 = 30$   
PQ =  $40 - 12 = 28$ .  
∴ Perimeter =  $93$ 

 $\therefore Area of \, \Delta ACB = \frac{1}{2} \times 12 \times 5$ 

**146.**  $\angle DCB = \angle BAD$  (angle drawn by the same segment BD)  $\therefore \Delta BCE \sim \Delta DEA$ 



http://www.totalgadha.com



**152.** If we draw a circle passing through A, B and C, taking BC as diameter and M as center. It will pass through point B & C since  $\angle B = 90^{\circ}$  which means it lies in semicircle and AD in the Diameter.





http://www.totalgadha.com



http://www.totalgadha.com



**156.** From  $\triangle AGD$  and  $\triangle GBE$ 









$$EF = \sqrt{12^2 + 7^2} = 144 + 49 = \sqrt{193}cm.$$

**159**. Lets assume the radius & height of the cylinder is r & h respectively.

So its volume = 
$$\pi$$
 r<sup>4</sup>h  
The new radius =  $\frac{7r}{6}$   
It is given that  $\pi r^2h = \pi \left(\frac{7r}{6}\right)^2 h'$  (h' is the new height)  
 $\Rightarrow h = \frac{36}{49} h'$   
 $\Rightarrow h' = \frac{36}{49} h' = \frac{72}{98} h = h - \frac{18}{98} h$   
 $= 18\%$  approx  
160.  $\pi rh = \frac{1}{2}$  (given)  
 $\Rightarrow r = 2$  unit  
 $\frac{r}{h} = \frac{2}{3}$  (given)  $\Rightarrow n = 3$  unit  
 $\therefore$  total surface area =  $\pi rh + 2\pi r^2 = \pi [2 \times 3 + 2 \times 2^2)$   
 $= 14\pi$   
161. The path of the ant is given in the figure  
below:  
 $\therefore$  The distance covered by the ant is  
 $= 2 \times \sqrt{4\pi^2 r^2} + \frac{h^2}{4}$   
 $= 4 \times \sqrt{4 \times \pi^2 \times \frac{144}{\pi^2} + \frac{20^2}{4}}$   
 $= 4 \times \sqrt{576 + 100}$   
 $= 4 \times 26$   
 $= 104$ 

**162**. The radius of such sphere would be same as the radius of in circle of the cross section of come. (as shown in figure )

http://www.totalgadha.com

From  $\triangle ABD$ ,

AB = 
$$\sqrt{AD^2 + BD^2}$$
 =  $\sqrt{15^2 + 12^2}$   
=  $\sqrt{369}$   
= 19.20 cm  
∴ = AC  
∴ Semi peremeter (s) of  $\triangle ABC$  =  $\frac{19.20 + 24 + 19.20}{2}$  = 31.20cm



Area of △AB =  $\frac{1}{2} \times 24 \times 15 = 180 \text{ cm}^2$ ∴ in radius (r) =  $\frac{Area}{5} = \frac{180}{31.20} = 5.77 \text{ cm}.$ ∴ Volume of sphere =  $\frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} \times (5.77)^3 = 805 \text{ cm}^3$ 

**163.** Let assume the radius of come = cylinder = sphere = r and the did of sphere (2r) = height of come = height / cylinder

or 
$$r = \frac{h}{2}$$
 =h  
Now the volume of come  $= \frac{1}{3}\pi r^2 h = \frac{2}{3}\pi r^3 = P$   
volume of cylinder  $= \pi r^2 h = 2\pi r^3 = Q$   
volume of sphere  $= \frac{4}{3}\pi r^3 = R$   
 $\therefore P + R = \left[\frac{2}{3} + \frac{4}{3}\right]\pi^3 = 2\pi r^3 = Q$   
 $\Rightarrow P - Q + R = 0$   
164. The isosceles right angle triangle  $= 2 \times \frac{1}{3}\pi r^2 h = \frac{2}{3}$   
in the figure :-  $r = h = \frac{3x}{2}$   
So the volume of the solid generated due to the rotation of a isosceler right  
angle triangle  $= 2 \times \left[\frac{1}{3}\pi r^2 h\right]$   
 $= \frac{2}{3}\pi r^3$   
 $= \frac{2}{3}\pi \frac{27}{8}x^3$   
 $= \frac{9}{4}\pi x^3$ 

**165.** The volume of the sphere =  $\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10.5)^3$ 

The cuboid of maximum is the one which is having all side equal or a cube. So the volume of the cube=  $x^3$  (where x is the length of one side)

$$\therefore x^{3} = \frac{4}{3} \times 10.5 \times 10.5 \times 10.5$$
  
= 4851  
x = 16.92  
∴Total surface area of such cube = 6x<sup>2</sup>  
= 6x(16.92)<sup>2</sup>  
= 1719.3

119

http://www.totalgadha.com

**166**. The radius of the sphere = R = 6cm

The volume taken out would be  $\frac{1}{6}^{m}$  the volume of the sphere. Therefore,

the remaining volume would be  $\frac{5^m}{6}$  the volume of the sphere, i.e.

$$\frac{5}{6} \times \frac{4}{3}\pi \times 6^3 = 240\pi$$

167. In this process the volume of n cones. Would be equal to the volume of the cylinder.

 $\therefore n \times \frac{1}{3} \times \pi \times 1^2 \times 1 = \pi \times 3^2 \times 5$  $\therefore n = 3^3 \times 5 = 135$ 

**168**. In this process the volume of the new cube would be equal to the sum of volume of the three smaller cube.

 $\therefore a^3 = 1 + 216 + 512 = 729$ 

 $\therefore$  the length of the diagonal =  $\sqrt{3}a = \sqrt[9]{3}cm$ .

**169**. From the figure it is clear that only half of the volume of cylinder is filled with soft drink and the remaining half is empty.

 $\therefore$  the capacity of the cylinder = 4.2 ltr.

**170.** If we consider only one villi. So now the perfected surface area of the villi =  $2\pi rh + \pi r^2$  and the surface area of small intestine, projected to food, without villi =  $\pi r^2$ 

: percentage increase in the surface area exposed to food =  $\frac{2\pi rh + \pi r^2}{\pi r^2} \times 100$ 

$$= \frac{2\pi rh}{\pi r^2} \times 100$$

$$= \frac{2h}{r} \times 100$$

$$= \frac{2 \times 1.5 \times 10^{-3}}{1.3 \times 10^{-4}} \times 100$$

$$= \frac{30}{1.3} \times 100$$

**171**. The total surface area of the human head =  $4\pi r^2$ 



Area of the head covered with hair =  $\frac{5}{9} \times 4\pi r^2$ 

$$= \frac{5}{2}\pi r^{2}$$
$$= \frac{5}{2} \times \frac{2}{7} \times 7 \times 7$$
$$= 385 \text{ cm}^{2}$$

 $\therefore$ Total number of hair on a human head =  $385 \times 300$  hair. Since the daily hair loss is one hair/1500 hair.

∴ number of hair, on an average, a person lose =  $\frac{385 \times 300}{1500}$ 

**172.** When we remove cube A we fined five new unit area surfaces named a,b,c,d and e or the surface area increases by 4cm<sup>2</sup> when we remove cube B we fine four new unit area surfaces named f,g,h and I of the surface area increases by 3cm<sup>2</sup> Similarly the surface area increases by 2cm<sup>2</sup> when we remove cube C

:. The total surface area of the new figure =  $[6 \times 4 \times 4] + [4 + 3 + 2]$ 

$$96 + 9 = 105 \text{cm}^2$$

77 hair.

**173.** Since all the solids are made up of same material. So that their weight are directly proportional to their volume. Lets assume that their height = x = radius (given)

Volume of a sphere =  $\frac{4}{3}\pi x^3$ 

Volume of a cylinder =  $\pi x^3$ 

Volume of a cone =  $\frac{1}{3}\pi x^3$ 

:.Some of volume of two sphere, one cylinder and one cone =  $\left|\frac{8}{3} + 1 + \frac{1}{3}\right| \pi x^3$ 

$$= 4\pi x^{3}$$

The same volume can be balanced by:-

(1) – 4 cylinder.

(2) 3 cylinder + 3 cones.

(3) 2 cylinder +2 cones +1 sphere

So there are 3 ways to balance the bean with the given solids.

**175.** Slant height of the cone = 10cm And the perimeter of the base circle = length of the are of semi circular paper ship.



2πr = πR (R= 10cm)  
R= 5  
∴height of cone = 
$$\sqrt{100^2 - 25} = \sqrt[5]{3}$$
  
∴volume of cone =  $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi 5^2 \times \sqrt[5]{3} = \frac{125\pi}{\sqrt{3}}$ 

. When we observe the length of the rod from the side, front and bottom, we get the length of side face diagonal, front face diagonal and bottom face diagonal.

$$\therefore 5 = \sqrt{b^{2} + h^{2}} \text{ (side face diagonal) - (1)}$$

$$\sqrt[4]{10} = \sqrt{l^{2} + h^{2}} \text{ (Front face diagonal) - (2)}$$

$$\sqrt{153} = \sqrt{b^{2} + l^{2}} \text{ (Bottom face diagonal) - (3)}$$
From (1), (2) & (3)  
S^{2} + (\sqrt{10})^{2} + (\sqrt{153})^{2} = 2[b^{2} + h^{2} + l^{2}]
Or  

$$b^{2} + h^{2} + l^{2} = \frac{1}{2}[25 + 160 + 153] = \frac{1}{2} \times 338 = 169$$
Or  $\sqrt{b^{2} + h^{2} + l^{2}} = \sqrt{169} = 13 \text{ cm}.$  (body diagonal of cuboid)  
 $\therefore \text{ length of rod} = 13 \text{ cm}.$  (body diagonal of cuboid)  
 $\therefore \text{ length of rod} = 13 \text{ cm}.$   
**177.** From  $\triangle \text{ABC}$  and  $\triangle \text{AEF}$   

$$\frac{AD}{ED} = \frac{AD}{BO} \text{ (Since both the } \Delta \text{ s are similar)}$$
 $\therefore \text{ ED} = \frac{AD \times BO}{AO}$   
 $= \frac{(H - h) \times \frac{7}{2}}{H} = \frac{(H - h)H}{2H} = \frac{H - h}{2} - h$ 
From  $\triangle \text{MNO}$   
 $R^{2} = \left(\frac{H}{2}\right)^{2} - \left(\frac{H - 2h}{2}\right) = \frac{H^{2} - H^{2} - 4h^{2} + 4Hh}{4}$ 
 $R^{2} = \sqrt{\frac{4Hh - 4H^{2}}{4}}$ 
Since both the cross sections are having equal area  
 $\frac{H - h}{2} = \sqrt{\frac{4Hh - 4h^{2}}{4}} = \frac{H^{2} + h^{2} - 2Hh}{4} = \frac{4Hh - 4h^{2}}{4}$ 
 $\Rightarrow \text{ H}^{2} + \text{Sh}^{2} - 6\text{Hh} = 0 + \text{P}^{2}\text{-Hh} - \text{Sh} + \text{Sh}^{2}$ 

 $\Rightarrow (\text{H-5h}) \; (\text{H-h})=0$  Or h=H (which in not possible)



Or h=
$$\frac{H}{5}$$

**178.** If the initial volume (V)=  $\pi r^2 h$ Then the new volume (V<sup>1</sup>) =  $\pi(1.1r^2) \times 0.9h$  $= 1.089 \pi r^2 h$ 

$$\therefore V^1 = V + 0.089V$$
$$= V + \frac{8.9}{100}V$$

It means the new volume is 8.9% more then the previous volume.

179. If we see the cross section of the come, it would look like the same as shown in the figure (b)



$$X = \frac{2560}{640} = 4$$

 $\therefore$  length of line segment LC= 3x = 12cm.



**182.** Sum of the volumes of cube  $S_1$  and  $S_2 = a_1^3 + a_2^3$ Sum of the length of edges of cubed  $S_1$  and  $S_2 = 12a_1+12a_2$ It is given that :-



$$a_1^3 + a_2^3 = 12a_1 + 12a_2$$
  
Or  $(a_1 + a_2)(a_1^2 + a_2^2 - a_1a_2) - 12(a_1 + a_2) = 0$   
Or  $(a_1 + a_2)(a_1^2 + a_2^2 - a_1a_2 - 12) = 0$   
Since  $a_1 + a_2 = 0$  (not possible)  
 $\therefore a_1^2 + a_2^2 - a_1a_2 - 12 = 0$   
Or  $(a_1 - a_2)^2 + a_1a_2 = 12$ 

**183.** If we take the cross section of the pyramid it would look like the same as shown in the figure:



 $\therefore \angle BAD = 90^{\circ}$ 

**184.** In the above figure CB, represents the water surface. If we till the bowl the water will start spilling as the point B coincide with point e.

Or, as line OB coincide with line oe

To male this happen we have to till the line OB by angle lpha

Now from triangle OAB

OB = r (radius of bowl)

$$OA = \frac{r}{2}$$
 (given)

 $\therefore \angle AOB = 60^{\circ}$ 

 $or \angle \alpha = 30^{\circ}$ 

**185.** The cut plane is ODB

OD and BD are the medium of

 $\Delta\, {\sf OAC}$  and  $\,\Delta\, {\sf ABC}$  respectively.

:. OD=BD =  $\frac{\sqrt{3}}{2}a$  and OB= a (given) the height of the triangle ODB would be same as height of

tetrahedron

$$\therefore$$
 area =  $\frac{1}{2}BD \times height = \frac{1}{2} \times \frac{\sqrt{3}}{2}a \times \sqrt{\frac{2}{3}a}a$ 

**186.** .From the figure  $h + \frac{h}{2} = H$ 





$$\frac{3}{2}h = H$$

$$h = \frac{2}{3}H$$
radius of the conical column of send =  $\frac{2}{3}R$ 

$$\therefore$$
 Volume of sand in upper cone =  $\frac{8}{27}V$ 
Where V in the total volume of sand (or each of cone)  

$$\therefore$$
 Volume of sand poured down in the lower cone =  $V = \frac{8}{27}V$ 

$$= \frac{19}{27}V$$

$$\therefore$$
 since the entire volume of sand takes the to pour down  

$$\therefore \frac{19}{27}V \text{ of sand will take } \frac{19}{27} \times 27 \text{ mins}$$

$$= \frac{19 \times 20}{9} = \frac{380}{9} = 42.23 \text{ mins}$$
**187.**  $\frac{1}{2}AC \times BP = \frac{1}{2}AB \times BC$  (area of triangle)  

$$\therefore BP = \frac{8 \times 16}{10} = 4.8cm$$
From the similar  $ABDEandAABC$   
 $DB = 8 \times \frac{4.8}{10} = 3.84cm$   
 $BE = 6 \times \frac{4.8}{10} = 2.88cm$   

$$\therefore$$
 area of shaded portion = area of semi circle – area of  $ABDE$   

$$= \frac{1}{2} \times \frac{\pi(4.8)^2}{4} - \frac{1}{2}3.84 \times 2.88$$
**188.** If we join center of inscribed circles.  
We will get an equilateral triangle of side 2a  
now the radius R of the outer circle = AD + AD  
Where  $AO = \frac{2}{3}$  of medium of  $\Delta ABC$ 

$$\therefore R = a + \frac{2a}{\sqrt{3}}$$

 $\sqrt{3}$  $\therefore$  area of outer circle=  $\pi R^2$ 

$$= \pi \left[ a + \frac{2a}{\sqrt{3}} \right]^2$$



$$= \frac{\pi \left(2 + \sqrt{3}\right)^2 a^2}{3}$$

**189.** Area of shaded portion = area of circumscribing circle – area of  $\triangle ABC$ 

$$- 3 \times \frac{5}{6} \text{ area of smaller circle}$$

$$= \frac{\pi \left[2 + \sqrt{3}\right]^2 a^2}{3} - \frac{\sqrt{3}}{4} \times 2a \times 2a - 3 \times \frac{5}{6} \times \pi a^2$$

$$= \frac{\pi \left(7 + \sqrt[4]{3}\right)}{3} a^2 - \sqrt{3} a^2 - \frac{5}{2} \pi a^2$$

$$= \frac{\left[14 + \sqrt[8]{3} - 15\right] \pi a^2}{6} - \sqrt{3} a^2$$

$$= \frac{\left(\sqrt[8]{3} - 1\right)}{6} \pi a^2 - \sqrt{3} a^2$$

**190.** Let the base radius and slant height is r, and l, for the first cone and similarly  $r_2$  and  $l_2$  for the second cone

$$\frac{\pi r_1 l_1}{\pi r_2 l_2} = \frac{2}{1} \quad \text{(given)}$$

$$\frac{r_1}{r_2} = \frac{2}{1} \frac{l_2}{l_1} = 2 \times 2 \qquad \left(\frac{l_2}{l_1} = 2; \text{given}\right)$$

$$= 4$$

$$\therefore \frac{A_1}{A_2} = 16 \quad \text{(A}_1 \text{ and } A_2 \text{ are the area of bases of cone 1 and cone 2 respectively.)}$$

**191**. Let the lines of folds be PQ and QR. The folded piece would be symmetrical about the line of fold.  $\Rightarrow 2\theta + \alpha \alpha = 180^{\circ} \Rightarrow \theta + \alpha = 90^{\circ}$ 

С

45

or 
$$\theta = 90 - \alpha$$
  
In  $\triangle PQD$   $\tan \theta = \frac{2x}{60 - 5x}$   
In  $\triangle QRC$   
 $\tan (90 - \alpha) = \tan \theta = \frac{5x}{45}$   
 $\frac{5x}{45} = \frac{2x}{60 - 5x}$   
 $\Rightarrow 60 - 5x = 18 \ x = \frac{42}{5} = 8.4$   
area  $\triangle PDQ = \frac{1}{2} \times 16.8 \times 18 = 151.2$ 



**192**. ABD is an equilateral triangle.

Since E and F are the midpoints of the side P would also be a midpoint. Similarly, we can slows that S would also be a midpoint. Therefore the sides of rhombus PQRS would be half the sides of ABCD.

Sum of areas = 
$$2 \times \frac{\sqrt{3}}{4}a^2 + \frac{\sqrt{3}}{4}a^2 + \frac{\sqrt{3}}{16}a^2 + \dots$$
  
=  $\frac{\sqrt{3}}{2}a^2\left(1 + \frac{1}{2} + \frac{1}{4} + \dots\right)$   
=  $\frac{\sqrt{3}}{2}a^2 \times 2 = \sqrt{3}a^2 = 64\sqrt{3} \Rightarrow a = 8$   
Sum of perimeters =  
 $(4 \times 8 + 4 \times 4 + 4 \times 2 + \dots) + 2\left(4 + 4\sqrt{3} + \frac{4 + 4\sqrt{3}}{2} + \dots\right)$   
=  $4 \times 8\left(1 + \frac{1}{2} + \frac{1}{4} + \dots\right) + 2\left(4 + 4\sqrt{3}\right)\left(1 + \frac{1}{2} + \frac{1}{4} + \dots\right)$ 

 $= \left(40 + 8\sqrt{3}\right) \left(1 + \frac{1}{2} + \frac{1}{4} + \dots\right) = 16\left(5 + \sqrt{3}\right)$ 

**193.** The angle bisectors of two interior supplementary angles intersect at 
$$90^{\circ}$$
.  
Therefore the quadrilateral formed would be a rectangle. Let the quadrilateral be PQRS as shown in the figure.

$$RB = 3\sqrt{3} (\Delta ARB \text{ is a } 30 - 60 - 90 \text{ triangle})$$

$$RQ = 3(\sqrt{3} - 1)$$
Similarly, AR = 9 and AS =  $3\sqrt{3}$ 

$$\Rightarrow RS = 3\sqrt{3}(\sqrt{3} - 1)$$

$$\Rightarrow Area = 9\sqrt{3}(\sqrt{3} - 1)^2 = 9\sqrt{3}(4 - 2\sqrt{3}) = 18(2\sqrt{3} - 3)$$

**194.** It can be seen that EBCO is a parallelogram. The heights of both  $\triangle$ BCD and  $\triangle$ ABC are the same. Therefore the ratio of areas = ratio of bases

$$\Rightarrow \frac{AD}{BC} = \frac{8}{3}$$
  
Let AD = 8x, BC = 3x,  $\Rightarrow$  AE = 5x  
$$\Rightarrow \frac{1}{2} \times 8x \times h = 8 \qquad \Rightarrow hx = 2$$
  
 $area \Delta AEB = \frac{1}{2} \times 5x \times h = 5$ 

**196.** 
$$\angle ABC = \angle ACB = 57.5^{\circ} = \angle BEC$$
 (EB = BC)  
 $\Rightarrow \angle EBC = 180 - (57.5 + 57.5) = 65^{\circ}$   
Hence data in consistent

http://www.totalgadha.com



http://www.totalgadha.com

$$\Rightarrow Area \Delta DEF = \frac{64}{15} \times 45 = 192$$



204. Join O to Q



$$\sum_{\substack{a \in A \\ a \in A}} \sum_{\substack{a \in A \\ a \in A}} \sum_{\substack{a$$

 $\begin{array}{l} \textbf{208.} \ \textbf{AM}\times\textbf{AD} = \textbf{AP}\times\textbf{AQ} = \textbf{AS}\times\textbf{AR} \\ \Rightarrow 4\times10 = 5(5+\textbf{SR}) \Rightarrow \textbf{SR} = 3. \end{array}$ 

## 209.

 $\angle PEH = 180 - (95 + 50) = 35^{\circ}$  $\angle EFQ = 180 - (95) = 85^{\circ}$  $\Rightarrow \angle EQF = 180 - (35 + 85) = 60^{\circ}$ 

**210.** 
$$\angle PRQ = \angle RPQ = 45^{\circ} \Rightarrow PQ = QR = x$$
 (say)

http://www.totalgadha.com

$$RD \times PR = RE \times RQ \Rightarrow 3 \times x\sqrt{2} = (x - 5\sqrt{2}) \ddagger$$
$$\Rightarrow x = 8\sqrt{2} \Rightarrow pr = x\sqrt{2} = 16$$



**216.** Surface area = Areas of lateral rectangles + areas of opposite faces



$$= 3 \times 6 \times 15 + 12 \times 15 + \frac{\sqrt{3}}{4} \times 6^2 \times 6$$
$$= = 270 + 180 + 54\sqrt{3}$$
$$\approx 543$$

**217.**  $2\pi r^2 + 2\pi rh = 96\pi \Longrightarrow 2\lambda r(r+h) = 96\lambda$ ⇒ r = 4  $\Rightarrow$  h = 8 **218.**  $\frac{h-k}{h} = \frac{r_1}{r_2}$   $r_1 = r\left(1-\frac{k}{h}\right)$  $\frac{1}{3}\pi r^{2}\left(1-\frac{k}{a}\right)^{2}\times(h-k) = \frac{1}{3}\pi r^{2}h\times\frac{1}{2}$ 

$$\left(1-\frac{k}{h}\right)^3 = \frac{1}{2} \quad \frac{R}{h} = 1 - \left(\frac{1}{2}\right)^{\frac{1}{3}} \quad k = h \left(1 - \left(\frac{1}{2}\right)^{\frac{1}{3}}\right)^{\frac{1}{3}}$$

1

**219.** The portion of the bowl filled = 
$$\frac{\frac{1}{3}\pi r^2 h}{\frac{2}{3}\pi r^3}$$

$$= \frac{h}{2r} = \frac{8}{24} = \frac{1}{3} = 33.33\%$$
  
portion empty = 66.66%

220. 
$$\frac{OJ}{DC} = \frac{KJ}{BC} \Rightarrow KJ = \frac{3}{4}BC \Rightarrow IK = \frac{1}{4}BC$$
$$\frac{EI}{EB} = \frac{IL}{BC} \Rightarrow IL = \frac{2}{3}BC \Rightarrow LJ = \frac{1}{3}BC$$
$$\Rightarrow KL = \left(1 - \left(\frac{1}{4} + \frac{1}{3}\right)\right)BC = \frac{5}{4} = 1.25$$

**221.**  $\triangle$ SRT is equilateral  $\Rightarrow \angle RSR = 60^{\circ}$ Area of the shaded region = Area sector TSR + Area sector TRS - Area  $\triangle$ STR

$$= \frac{\pi}{6}a^{2} + \frac{\pi}{6}a^{2} = \frac{\sqrt{3}}{4}a^{2} = \frac{\pi}{3}a^{2} - \frac{\sqrt{3}}{4}a^{2}$$
  
$$\therefore Ratio = \frac{\pi}{3} - \frac{\sqrt{3}}{4}$$

222. Join H and I Area  $\Box$ GHFI = Area  $\triangle$ EFG  $\Rightarrow$  Area  $\triangle$ EIJ = Area  $\triangle$ GHJ (why?)  $\Rightarrow$  Area  $\triangle$ EIJ + Area  $\triangle$ HIJ = Area  $\triangle$ GHJ + Area  $\triangle$ HIJ



⇒ Area ΔEHI = Area ΔGHI  
There are two triangle with the same box and same area  
⇒ GE || HI ⇒ DE || HI ⇒ DH : HF = 2 : 3  
⇒ AreaΔEFH = 
$$\frac{3}{5} \times Area\Delta DEF = \frac{3}{5} \times 10 = 6$$
  
223.  $\angle AOD - \angle BOC = 2\angle AED = 30^{\circ}$   
224.  $CD = \frac{AC \times BC}{AB} = 12$   
In radius of  $\triangle CPD = \frac{12 + 9 - 15}{2} = 3$   
 $\triangle ADC$  and  $\triangle BDC$  are similarly. Their in radius would be in the  
ratio of their sides. The ratio =  $\frac{AC}{BC} = \frac{3}{4}$   
Therefore radius of the in radius of  $\triangle BCD = 4$ . Drop a  
perpendicular from P to vertical line passing through Q.  
 $PQ = \sqrt{1^2 + 7^2} = \sqrt{50}$   
225. Join E and F. Let EF intersect OG at H. W is the center of the circle  
⇒ H is the midpoint of OG  
 $\Rightarrow OH = \frac{r}{2}$  OF = r  $\Rightarrow \angle OFH = 30^{\circ} = \angle BOF$   
In  $\triangle BOF = 30^{\circ}$ , OF = OB  $\Rightarrow \angle OBF = 75^{\circ}$ 

226. The height and radius of the cone at height 5cm are of height and radius of the original one and volume is one-eighth.

The height and radius of the cone at high 2cm are  $\frac{4}{5}$  th of height and radius of the original cone and

25

volume is 
$$\left(\frac{4}{5}\right)^3 = \frac{64}{125}th$$
  
Therefore  $V_1 = \frac{1}{8}$   $V_2 = \frac{64}{125} - \frac{1}{8} = \frac{387}{1000}$   $V_3 = 1 - \frac{64}{125} = \frac{61}{125}$   
Ratio = 125 : 387 : 488

227 and 288. △BFE is a right angled triangle

 $\angle FBE = 30^{\circ} \implies \angle BEF = 60^{\circ}$ 

 $\Rightarrow \Delta OEF$  is an equilateral triangle area of sector BFE = Area of sector FOE + Area ∆BOF

$$= \frac{\pi}{6} \times 2^2 + \frac{1}{2} \times 2 \times \sqrt{3} = \frac{2\pi}{3} + \sqrt{3}$$

area of shaded region = 
$$\frac{\pi \times 2^2}{2} - \left(\frac{2\pi}{3} + \sqrt{3}\right) = 2\pi - \frac{2\pi}{3} - \sqrt{3}$$





$$\therefore \text{ Total area left} = 2\left(\frac{4\pi}{3} - \sqrt{3}\right) = \frac{8\pi}{3} - 2\sqrt{3}$$

. We can see that

$$\sqrt{625 - x^2} = \sqrt{676 - (17 - x)^2}$$

$$625 - x^2 = 676 - 289 - x^2 + 34x$$

$$\Rightarrow x = 10 \Rightarrow h = \sqrt{625 - 100} = \sqrt{525} = 5\sqrt{21}$$

$$Area = \left(\frac{60 + 77}{2}\right) \times 5\sqrt{21}$$
230.  $AC^2 + BD^2 = AB^2 + CD^2 + 2AD.BC$ 

$$= 81 + 225 + 2 \times 12 \times 20 = 786$$

