RSM-08

Optional Paper

Subject : MATHEMATICS-I गणित-I Roll No.

Roll No.

Answer Booklet No.

Total Pages : **32** Time : **3** Hours Maximum Marks : **200**

(In Words)

(In Figures)

	(Sig	gnature o	of the Invig	ilator)			(Signature of the Candidate)		
	FOR E	XAMI	NER'S US	E ONI	X	IN	STRUCTIONS FOR CANDIDATES		
		Mark	s Obtained	1					
PA	RT-A	PA	RT-B	PA	RT-C	1.	1. Write your Roll Number in the sp		
Q.	Marks	Q.	Marks	Q.	Marks	-	-		
No.	Obtained	No.	Obtained		Obtained		provided on the Top of this page.		
1		21		33					
2		22		34		2	Read the instructions given inside carefully.		
3		23		35					
_4		24		<u>3</u> 6		3.	T		
5		25		37		3.	Two pages are attached at the end of the		
<u>6</u> 7	·	26	<u> </u>	38			Test Booklet for rough work.		
8		<u>27</u> 28		39					
9		29				4.	You should return the Test Booklet to the		
10		30				1	Tou should return the rest bookier to the		
11		31					Invigilator at the end of the examination		
12		32	•		·	1	and should not carry any paper with you		
13									
14					·		outside the examination hall.		
15						1			
16						5.	A candidate found creating disturbance at		
17	<u> </u>		_				_		
18 19					·	1	the examination centre or misbehaving with		
20							Invigilation Staff or cheating will render		
 Total		Total		Total			himself liable to disqualification.		

Marks Obtained :

Part-A :

Part-B :

Part-C :

Total : _____

(Marks in Words)

.

____

(Signature of Examiner)

_ ._

SEAL

परीक्षार्थियों के लिए निर्देश

- (1) पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिये ।
- (2) अन्दर दिये गये निर्देश ध्यानपूर्वक पढ़ें ।
- (3) उत्तर-पुस्तिका के अन्त में कच्चा काम (Rough Work) करने के लिए दो पेज (Pages) दिये हुए हैं ।
- (4) आपको परीक्षा के समय की समाप्ति पर उत्तर-पुस्तिका को निरीक्षक महोदय को लौटाना होगा और परीक्षा भवन से बाहर जाते समय कोई भी कागज अपने साथ नहीं ले जाना होगा।
- (5) यदि कोई अभ्यर्थी परीक्षा केन्द्र पर व्यवधान उत्पन्न करता है या वीक्षण स्टाफ के साथ दुर्व्यवहार करता है अथवा वंचनापूर्ण कार्य करता है तो वह स्वयं ही अयोग्यता के लिए उत्तरदायी होगा।

•-

[This question paper contains 32 pages]

RSM-08

MATHEMATICS-I गणित-I

Time : Three Hours समय : तीन घण्टे

Maximum Marks : 200 पूर्णांक : 200

IMPORTANT NOTE महत्त्वपूर्ण निर्देश

- (a) The question paper has been divided into three parts Part A, B and C. The number of questions to be attempted and their marks are indicated in each part. प्रश्न-पत्र "अ", "ब" और "स" तीन भागों में विभाजित है । प्रत्येक भाग में से किये जाने वाले प्रश्नों की संख्या और उनके अंक उस भाग में अंकित किये गये हैं ।
- (b) Attempt answers either in Hindi or English, not in both. उत्तर हिन्दी या अंग्रेजी भाषा में से किसी एक में दीजिये, दोनों में नहीं ।
- (c) Write the answers in the space provided below each question. Additional Booklet or Blank Paper will neither be provided not allowed. प्रत्येक प्रश्न के नीचे दिये हुए स्थान में ही उत्तर दीजिये । अतिरिक्त पुस्तिका या कोरा कागज़ न तो पृथक् से दिया जायेगा और न ही उसकी अनमति दी जायेगी ।
- (d) The candidates should not write the answers beyond the limit of words prescribed in Parts A, B and C, failing which the marks can be deducted. अभ्यर्थियों को भाग "अ", "ब" और "स" में अपने उत्तर निर्धारित शब्दों की सीमा से अधिक में नहीं लिखने चाहिए । इसका उल्लंघन करने पर अंक काटे जा सकते हैं ।
- (e) In case candidate makes any identification mark i.e. Roll No./Name/Telephone No./Mobile No. or any other marking either outside or inside the answer book, it would be treated as using unfair means. The candidature of the candidate for the entire examinations shall be rejected by the Commission, if he is found doing so.

अभ्यर्थी द्वारा उत्तर पुस्तिका के अन्दर अथवा बाहर पहचान चिह्न यथा रोल नम्बर/नाम/मोबाईल नम्बर/टेलिफोन नम्बर या अन्य कोई निशान इत्यादि लिखे जाने अथवा अंकित किये जाने को अनुचित साधन का प्रयोग माना जायेगा । आयोग द्वारा ऐसा पाये जाने पर अभ्यर्थी की सम्पूर्ण परीक्षा में अभ्यर्थिता रद्द कर दी जायेगी ।

	PART – A भाग – अ	
Marl	ks : 40	з
Note		ries 2 marks. Answer should
नोट	: समस्त 20 प्रश्नों के उत्तर दीजिये । प्रत्येक प्रश्न के 2 अंक निर्धारित चाहिये ।	त हैं । उत्तर 15 शब्दों से अधिक नहीं
1.	Give definition of nullity of a linear transformation. एक रैखिक रूपान्तरण की नलिटी परिभाषित कीजिये ।	
		· · · ·
	·	
<u> </u>	If V(F) is a vector space, then prove that	
<i></i>	यदि V(F) एक सदिश समष्टि है तो सिद्ध कीजिए कि	
	$\lambda x = 0 \Longrightarrow \lambda = 0$ or/ $\forall 1 x = 0$	
	$\mathbf{P}_{\mathbf{r}} = \mathbf{r} \left(\begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} \end{pmatrix} \right)$ is a basis for \mathbf{P}^2	
3.	Prove that $\{\hat{1}, \hat{j}\}$ is a basis for \mathbb{R}^2 .	
	सिद्ध कीजिए कि {î, ĵ}, ℝ² के लिए एक आधार है ।	
		·
_		
4.	Give an example of a non-commutative group. एक अक्रमविनिमेय समूह का उदाहरण दीजिए ।	
		······································

5.	Give statement of Lagrange's theorem for a subgroup of a finite group. एक परिमित समूह के एक उपसमूह के लिए लग्रांज प्रमेथ का कथन कोजिए ।
~	
6.	Define a prime field. एक अविभाज्य क्षेत्र को परिभाषा दीजिए ।
7.	What is a zero sequence ?
	एक शून्य अनुक्रम क्या है ?
	Why does a real sequence cannot have more than one limit?
•	एक वास्तविक अनुक्रम एक से ज्यादा सीमायें क्यों नहीं रखता ?

-

9.	Why does the function f(x) = e ^x sin x is continuous ? फलन f(x) = e ^x sin x क्यों सतत है ?
-	
10.	State Rolle's Theorem.
10.	रोल प्रमेय का कथन कीजिए ।
-	
11.	Write down envelope of
11,	निम्नलिखित रेखा-कुल का अन्वालोप लिखिए :
	$y = mx + \sqrt{a^2 m^2 + b^2}$
10	Circula Existence of a limit point of a subget S of P
12.	Give definition of a limit point of a subset S of IR. समुच्चय IR के एक उपसमुच्चय S के एक सीमांत बिन्दु को परिभाषित कोजिए ।
	ערייי איזערייא אויייא איייי איזערייער אייי איירייער איייער איייי איירייער איייי איייי איייי איייער איייער איי
	3
	6

13.	Prove that the set R – Q of irrational numbers is not open. अपरिमेय संख्याओं का समुच्चय R – Q विवृत नहीं है । सिद्ध कोजिए ।
	·
4.	Define absolute convergence of a series of real numbers. वास्तविक संख्याओं की एक श्रेणी के परम अभिसरण की परिभाषा दीजिए ।
5.	Write down definition of a harmonic function. एक हार्मोनिक फलन को परिभाषा दीजिए ।
	·
6.	Write down equation of a normal at a point (r_1, θ_1) to a conic $\frac{l}{r} = 1 + e \cos \theta$.
	एक शांकव $\frac{l}{r} = 1 + e \cos \theta$ के एक बिन्दु (r_1 , θ_1) पर अभिलम्ब का समीकरण लिखिए ।

P.T.O.

17. How many normals, in general, can be drawn to an ellipse from a given point in the plane of the ellipse ? सामान्यतया, एक दीर्घवृत्त पर, उसी दीर्घवृत्त के समतल में स्थित एक बिन्दु से, कुल कितने अभिलम्ब डाले जा सकते हैं ?

·

18. Write down centre and radius of the following sphere : निम्न गोले का केन्द्र व त्रिज्या लिखिये । $ax^2 + ay^2 + az^2 + 2uz + 2vy + 2wz + d = 0, a \neq 0.$

19. Write down sufficient conditions for a complex function to be analytic. एक सम्मिश्र फलन के विश्लेष्य होने की पर्याप्त शर्तें लिखिये।

 State the fundamental theories of Algebra. अलजेब्रा के मूलभूत प्रमेय का कथन कोजिए ।

Marks : 60

._

· · -

अंक : 60

- Note: Attempt all the twelve questions. Each question carries 5 marks. Answer should not exceed 50 words.
- नोट : समस्त 12 प्रश्नों के उत्तर दीजिये । प्रत्येक प्रश्न के 5 अंक निर्धारित हैं । उत्तर 50 शब्दों से अधिक नहीं होना चाहिए ।
- 21. Let V be an n-dimensional inner product space. Prove that any orthonormal set in V is linearly independent. Also prove that if $x = (x^1, ..., x^n)$ and $y = (y^1, ..., y^n)$ relative to an orthonormal basis (e_i) then $\langle x, y \rangle = x^1 y^1 + ... + x^n y^n$.

माना V एक n-विमीय इनर प्रॉडक्ट स्पेस है । सिद्ध कीजिए कि V में कोई लंबप्रसामान्य समुच्चय रैखिक आत्मनिर्भर होगा । यदि किसी लम्बप्रसामान्य आधार (e_i) के सापेक्ष $x = (x^1, ..., x^n)$ व $y = (y^1, ..., y^n)$ तो सिद्ध कीजिए कि $\langle x, y \rangle = x^1 y^1 + ... + x^n y^n$.

 						·		
 	·			<u> </u>				
 <u>^</u>					-			
 							<u> </u>	
 						"		
 		. <u>.</u>					·	
एक इनर प्राडक्ट $\left \langle x, y \rangle\right \leq x $		में सिद्ध कीरि	नए					
		में सिद्ध कीरि	नए					
		मे सिद्ध कीषि	नए					
		म सिद्ध कोषि 	नए 					
		म सिद्ध कोषि 	नए 					
		म सिद्ध कीषि 	नए 					
		म सिद्ध कोषि 	नए 					
		म सिद्ध को। 	नए 					
		म सिद्ध को। 	नए 	· · · · · · · · · · · · · · · · · · ·				
		म सिद्ध को। 	नए 					
		म सिद्ध को। 	नए 					
		म सिद्ध को। 						
		म सिद्ध को। 						
		म सिद्ध को। 						
		म सिद्ध को। 						
		म सिद्ध को। 						
		म सिद्ध को। 						
		म सिद्ध को। 						

24. If $f: G \to G'$ is a group homomorphism, then show that f is one-to-one if and only if $ker(f) = \{e\}$.

यदि $\mathrm{f}: \mathrm{G} o \mathrm{G}'$ एक ग्रुप होमोमार्फिज्म है तो दिखाइए कि f एकैंक होगा यदि और केवल यदि $\ker(\mathrm{f}) = \{\mathrm{e}\}$ ।

			·	
	·····			
		·····		<u> </u>
	· / ·		· · · · -	
			·	
	· .			
· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	
			-	
	· · ·	• <u></u>		···
		<u></u>		
			-	
				·····
	· · · · · · · · · · · · · · · · · · ·		-	
				·····
			-	
		· · · · · · · · · · · · · · · · · · ·	-	
		· · · · · · · · · · · · · · · · · · ·	-	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	······································		
	· · · · · · · · · · · · · · · · · · ·			·····

____ .

----

26.	Prove that सिद्ध कोजिए					
	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$					
						, <u>"</u>
	····				<u> </u>	<u> </u>
	· · · · ·				· .	
			-			
		÷				
						,
		1				
27.	A variable chord PQ	of a conic $\frac{t}{r} =$	$1 + e \cos \theta \sin \theta$	ibtends a con	stant angle 2	3 at the focus

S. Show that PQ always touches a conic having the same focus and directrix. एक चर जीवा PQ एक शांकव $\frac{l}{r} = 1 + e \cos \theta$ की नाभि S पर एक अचर कोण 2 β बनाती है । दिखाइये कि जीवा PQ हमेशा एक शांकव, जिसकी नाभि एवं नियता वही है, को स्पर्श करेगी ।

8.	Let Φ be the empty class of open subsets of \mathbb{R} . Then prove that the intersection of Φ is \mathbb{R} .
	माना कि Φ, IR के विवृत्त उपसमुच्चयों का रिक्त समूह है । सिद्ध कीजिए कि ∩ Φ = IR ।

29. If a real sequence $\langle a_n \rangle$ is convergent, then prove that the set $\{a_n\}$ is bounded. यदि एक वास्तविक अनुक्रम $\langle a_n \rangle$ अभिसरित हो तो सिद्ध कीजिए कि समुच्चय $\{a_n\}$ परिबद्ध होगा ।

....

 ······································	 	 		
 	 	 • • •	·····	

_ .

....

. . . .

~

 Find the sphere having a great circle उपर्युक्त दीर्घतम वृत्त वाला गोला ज्ञात कोजिए ।

 $x^{2} + y^{2} + z^{2} - 2x + 5y + 2z - 4 = 0, 2x - 2y - z = 5.$

.....

31. Find out the analytic function, whose real part is $e^x(x \cos y - y \sin y)$. उस विश्लेष्य फलन को ज्ञात कीजिए, जिसका वास्तविक भाग $e^x(x \cos y - y \sin y)$ है ।

. . . .

- ____ ____
- 32. If f(z) is continuous on a contour C of length l and $|f(z)| \le M$ for all $z \in C$, then show that

$$\left| \int_{C} f(z) \, dz \right| \le Ml.$$

यदि f(z), एक l लंबाई वाले परिवक्र C पर सतत है व हर $z \in C$ के लिए $\left| f(z) \right| \le M$; तो सिद्ध कीजिए कि

.

$$\left| \int_{C} f(z) dz \right| \le Ml.$$

.

×...

P.T.O.

.

PART - C

भाग – स

Marks : 100

अंक : 100

- Note : Attempt any 5 questions. Each question carries 20 marks. Answer should not exceed 200 words.
- नोट : कोई से 5 प्रश्न कीजिये । प्रत्येक प्रश्न के 20 अंक निर्धारित हैं । उत्तर 200 शब्दों से अधिक नहीं होना चाहिये ।
- 33. Let V be a finite dimensional vector space and W_1 and W_2 be subspaces of V. Then prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$ HITI कि V एक परिमित विमीय संदिश समष्टि है तथा W_1 व W_2 कोई दो उपसमष्टि हैं, तो सिद्ध कीजिए कि $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$

	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	
•	
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
······································	
	· · · · · · · · · · · · · · · · · · ·
· _ · · · · · · · · · · · · · · · · · ·	

P.T.O.

· · ____

· · · · · · --

.	
34.	Let I be an ideal of a commutative ring IR with unity. Then prove that R/I is a field if an only if I is maximal. माना कि I एक इकाई युक्त क्रमविनिमेय वलय R का एक आइडियल है । सिद्ध कीजिए कि R/I एक क्षेत्र होगा य व केवल यदि I मैकिज़मल है ।
	· · · · · · · · · · · · · · · · · · ·

•

_

· _--- ---

- 35. Let $f : \mathbb{R} \to \mathbb{R}$ be a real function. Prove that f is continuous if any only if $x_n \to x$ implies that $f(x_n) \to f(x)$.

माना कि f : $\mathbb{R} \to \mathbb{R}$ एक वास्तविक फलन है । सिद्ध कीजिए कि f सतत होगा यदि और केवल, यदि $x_n \to x$ हमेशा f(x_n) \to f(x) को इंगित करे ।

×.,

P.T.O.

· ···· ·

		*		
				 <u>–</u>
· · · · · · · · · · · · · · · · · · ·	-			
	•			

....

___

.

 Find the asymptotes of the curve निम्नलिखित वक्र के अनन्तस्पर्शी प्राप्त कीजिए ।

- ----

$$y = \frac{x^2 + 2x - 1}{x}$$

....

·				
	·			
	· · · · · · · · ·	· · ·		
			·····	
	· · · · · · · · · · · · · · · · · · ·		·	
			•	
	··			
			-	
		23		P.T.O.

•--

· -- · _

____ _____ ... ____ ____ ____ _____ • • • _____ ____ _____ _____ -----_____ _____

. . .

37. If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$ then prove \overline{u} and $\overline{u} = \tan^{-1} \frac{x^3 + y^3}{x - y}$ and \overline{u} and \overline{u}

.

<u>-</u>

.

	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
<u> </u>	
·	
·	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	······
N	· · · · · · · · · · · · · · · · · · ·
	·
~	
·	

P.T.O.

-

· ·· -----

. -

....

38. If PSP' and QSQ' are two mutually perpendicular focal chords of a conic $\frac{l}{r} = 1 + e \cos \theta$ then prove that

यदि PSP' व QSQ' एक शांकव $\frac{l}{r} = 1 + e \cos \theta$ की परस्पर अभिलंब नाभीय जीवायें हो तो सिद्ध कीजिए

 $\frac{(SP + SP' + SQ + SQ')(SP \cdot SP' - SQ \cdot SQ')}{(SP + SP') - (SQ + SQ')(SP \cdot SP' + SQ \cdot SQ')} = \frac{l}{2}$

~

	···· · ·
	· · · · ·
·	
۰ <u>ـ</u>	
27	P.T.C

-

· · · ···· _···

(b) If f(z) has a pole at z = a, then prove that $|f(z)| \to \infty$ as $z \to a$. $z = a \ \forall t \ f(z)$ on $\forall e a \ \forall here b \ de t = a$ for $\forall e a \ de t = a \ \forall t \ f(z) = b \ de t = a$.

	· · · · · · · · · · · · · · · · · · ·			
		<u></u>		
	·····			
		<u></u>		
· · · · · · · · · · · · · · · · · · ·				
		,		
		-	· · · · · · · · · · · · · · · · · · ·	
			······································	
		-	· · · · · · · · · · · · · · · · · · ·	
		-		
		-		
	······	-		
		· · · · · · · · · · · · · · · · · · ·		
		-		
			· · · · · · · · · · · · · · · · · · ·	

. _ .

P.T.O.

· __ · .._

······	
· · · · ·	
·	
· · · · · · · · · · · · · · · · · · ·	
<u> </u>	
·	
•	
-	- / L
	- / <u>-</u> - //
·	
·	
·	
·	
·	
·	
·	
·	
·	
·	
	~
	~
	~
	~

Space For Rough Work / कच्चे काम के लिए जगह

÷

_ ... _ -

- ...

-

· ·-

Space For Rough Work / कच्चे काम के लिए जगह

.

32

٠.

