2006 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

III B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS
 OPTIMIZATION TECHANIQUES
 (ELECTRICAL\& ELECTRONIC ENGINEERING)

NOVEMBER 2006

TIME - 3 HOUR
MARK - 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Determine the maximum and minimum values of the function: [8] $12 \times 5-45 \times 4+40 \times 3+5$
(b) A d.c. generator has internal resistance of R ohms and develops an open circuit voltage of ' V ' volts. Find the value of load resistance 'r' for which the power developed by the generator will be maximum.
[10]
2. (a) State and explain the necessary and sufficient conditions for existence of relative optima in case of multivariable optimization with constraints. [10]
(b) Find the dimensions of a rectangular parallelepiped with largest volume whose sides are parallel to the coordinate planes, to be inscribed in the ellipsoid.

8]
3. (a) State and explain the standard form of $L P P$. [6]
(b) Explain the significance of slack, surplus and artificial variables of LPP.
[10]
4. Show that the following LPP has unbounded solution
maximize $Z=3 x 1+2 x 2$ subject to $x \rrbracket-x 2 \square 13 x 1-2 x 2 \square 6 x 1, x 2 \square 0$
5. (a) If Pall the sources are emptied and all the destinations are filled, show that ai $=P$ bj is a necessary and sufficient condition for the existence of a feasible solution to a transportation problem
(b) Prove that there are only $m+n-1$ independent equations in a transportation problem, m and n being the no. of origins and destinations and that any one equation can be dropped as the redundant equation.

$$
[8+8]
$$

6. Draw the flowchart of Powell's method. Explain about each block.
7. Consider the problem:

Minimize $f(x 1, x 2)=(x 1-1) 2+(x 2-2) 2$ Subject to $2 x 1-x 2=0$
and x1 』10 Construct -K function according to the interior penalty function approach and complete the minimization of $-K$.
[16]
8. Determine the value of $u 1, u 2, u 3$ so as to maximize (u1.u2.u3), Subject to, $u 1+u 2+u 3=10$ and u1, u2, u3 ■ 0

