2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

IV B.TECH. II SEMESTER SUPPLEMENTARY EXAMINATIONS
BOUNDARY LAYER THEORY
(AERONAUTICAL ENGINEERING)

Answer any FIVE Questions All Questions carry equal marks

1. Simplify the equation of continuity in cylindrical coordinates $(r, \mu z)$ to the case of steady compressible ${ }^{\circ}$ ow in polar coordinates $(@=@ z=0)$ and derive a stream function for this case.
2. Derive the Navier-stokes equations.
3. Explain the ${ }^{\circ}$ ow at a rotating disc.
4. Derive the two-dimensional Poisson relation for pressure, analogous Poisson, assuming unsteady incompressible ${ }^{\circ}$ ow.
5. Investigate the use of the Crank-Nicolson (1947) method for computer analysis of a laminar boundary layer, as implemented, e.g., by Blottner (1970). What are its numerical advantages and disadvantages?
6. For the separating Falkner-Skan wedge- ${ }^{\circ}$ ow boundary layer, ${ }^{-}=-0.19884$, use any appropriate correlation to estimate the position Rex where transition ${ }^{-r s t}$ occurs?
Assume free stream turbulence level of 1 percent.
7. By direct substitution of the ${ }^{\circ}$ uctuation de ${ }^{-}$nitions and use of the averaging rules, develop the three-dimensional time-averaged x-momentum equation and show what reductions occur in a steady two-dimensional turbulent boundary layer.
8. As part of a low-temperature thermal-power design, a long 5-m diameter vertical circular cylinder is placed in the ocean. The current across the cylinder is $60 \mathrm{~cm} / \mathrm{s}$. At a point 1 km downstream of the cylinder, estimate
(a) the wake width (in m) and
(b) the maximum velocity defect (in cm / s).
