2005 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY

IV B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS COMPUTER AIDED ANALYSIS
 (CIVIL ENGINEERING)

TIME: 3 HOURS
MAX MARKS: 80

Answer any FIVE Questions All Questions carry equal marks ????

1. Explain various features of Computer Aided Design Process.
2. Explain various types of graphic terminals used in Computer Aided Design. [16]
3. Write about the following with examples.
(a) Translation
(b) Rotation
(c) Scaling.
4. A rigid portal frame $A B C D$ is fixed at the supports A and D. Vertical members $A B$ and $C D$ are equal to 4 m . The horizontal member BC is 5 m long and carries a central concentrated load of 60 kN . Analyse the portal frame using stiffness matrix method.
5. Explain fundamental concepts in Finite difference method and explain how it can solve complicated engineering problems.
[16]
6. Explain the procedure for solution of settlement under a raft foundation using finite differnce method. Discuss the effect of closely spaced pivotal points.
7. Reduce the system of equations
$2 \times 1+3 \times 2-2 \times 3-7 \times 4=1$
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+3 \mathrm{x} 4=6$
$x 1-x 2+x 3+5 x 4=4$ into a canonical form with $x 1, x 2$ and $x 3$ as the basic variables. [16]
8. Given the following linear programming problem :

Maximize $z=-x 1+2 \times 2-x 3$
Subject to $3 \times 1+x 2-x 3 \square 10,-x 1+4 x 2+x 3 \square 6$
$x 2+x 3 \square 4, x 1, x 2, x 3 \square 0$
(a) Determine an optimal solution to the problem
(b) Determine the ranges for discrete changes in the components b2 and b3 of the required vector so as to maintain the optimality of the current optimum solution.

