Kerala Class 10 Chemistry Answer key

Summative Assessment – Term II 2025-26

Class: X Score: 40

1-mark questions $(4 \times 1 = 4)$

- 1. Azimuthal
- 2. A. (a)-(ij) (b)-(i) (c)-(iji)
- 3. Zinc
- 4. B. Both are correct but II is not the explanation of I (Maximum 2 electrons due to spin quantum number; only n, l, m define the orbital)

2-mark questions $(7 \times 2 = 14)$

- 5. a) Chlorine (Cl) b) p-block
- 6. a) 1s² 2s² 2p⁶ 3s² 3s² (or 1s² 2s² 2p⁶ 3s²)
 b) 2 unpaired electrons (in 3s² both electrons are paired)
- 7. Molar volume at STP = 22.4 L 44.8 L = 2 moles Mass = 88 g \rightarrow Molar mass = 88/2 = 44 g/mol Gas = Carbon dioxide (CO₂)

OR

Boyle's law (P₁V₁ = P₂V₂) 760 × 400 = 1520 × V₂ V₂ = 200 mL

8.

Electrolyte

Product at cathode Product at anode

Molten NaCl

Na (sodium)

Cl₂ (chlorine)

Aqueous NaCl (concentrated) H₂ (hydrogen) Cl₂ (chlorine)

- 9. a) $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ (or $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$) b) To increase conductivity / to provide excess H^+ ions so that H_2 is liberated at cathode instead of Na
- 10. A \rightarrow Roasting B \rightarrow Carbon reduction / Smelting C \rightarrow Electrolytic refining

OR a) Bauxite (Al₂O₃·2H₂O) or Cryolite (Na₃AlF₆) also accepted

- b) Any two: Bauxite \rightarrow purification \rightarrow electrolysis in cryolite \rightarrow alumina dissolved \rightarrow electrolytic reduction
 - 11. Any two:
 - More corrosion resistant
 - Harder / stronger
 - More lustrous / better appearance
 - Does not rust easily

3-mark questions ($6 \times 3 = 18$)

- 12. a) M shell b) 4 subshells 3s, 3p, 3d c) 18 electrons $(2n^2 = 2 \times 9 = 18)$
- OR a) 4p subshell b) Zinc (Zn) c) d-block
 - 13. 11.2 L O_2 = 0.5 mole $O_2 \rightarrow 1$ mole metal oxide Mass of metal = 16 g \rightarrow molar mass of metal = 32 g/mol Equation: $M + O_2 \rightarrow MO_2$ (or $2M + O_2 \rightarrow 2MO$ if adjusted) Metal = Sulphur (S) is not metal; correct metal for 16 g is Magnesium (Mg) Balanced: $2Mg + O_2 \rightarrow 2MgO$ Equivalent mass = 32/2 = 12 Metal = Magnesium
- OR a) 5.6 L = 0.25 mole \rightarrow mass 11 g \rightarrow M = 44 g/mol b) CO₂ c) O=C=O (or :O::C::O:)
 - 14. a) Sodium (Na) or Potassium (K)
 - b) Zinc (Zn) it is more reactive than iron, forms protective layer
 - c) Zinc displaces copper; blue colour fades $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
 - 15. a) Gradual eating away of metal due to reaction with moist air/water/acids b) Any two: Painting, oiling, galvanising, electroplating, alloying c) Coating iron with zinc; zinc being more reactive corrodes first, protecting iron (sacrificial protection). Example: iron pipes, buckets
 - 16. a) Haematite (Fe₂O₃), Coke (C), Limestone (CaCO₃)
 - b) Lower region: C + O₂ \rightarrow CO₂, CO₂ + C \rightarrow 2CO (reduction) Upper region: Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂ c) Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂
 - 17. a) Anode Impure copper; Cathode Pure copper
 - b) Anode: $Cu \rightarrow Cu^{2+} + 2e^{-}$ Cathode: $Cu^{2+} + 2e^{-} \rightarrow Cu$
 - c) Acts as electrolyte / supplies Cu²⁺ ions / maintains concentration

4-mark question $(1 \times 4 = 4)$

- 18. (A) Any FOUR
 - a) Cr: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹ half-filled d-subshell is more stable
 - b) $2.8 L = 0.125 \text{ mole} \rightarrow M = 4/0.125 = 32 \text{ g/mol}$
 - c) Aluminium has very high affinity for oxygen / ${\rm Al_2O_3}$ is very stable / carbon cannot reduce it
 - d) Calcination heating carbonate ore in absence of air Roasting heating sulphide ore in excess air
 - e) Alloy homogeneous mixture of metals. Examples: Steel (Fe+C) stronger; Brass (Cu+Zn) corrosion resistant
 - f) Sodium reacts violently with oxygen and moisture in air

OR

- (B) a) 5.6 L = 0.25 mole
- b) $T_2 = 546 \text{ K}$, $P_2 = P/2 \rightarrow V_2 = (P_1V_1/T_1) \times (T_2/P_2) = 5.6 \times (546/273) \times 2 = 22.4 \text{ L}$
- c) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O(g)$
- (ii) Gas = Methane (CH₄); Gay-Lussac's law of gaseous volumes