Summative Assessment – Term II 2025-26 Model Question Paper 2 – CHEMISTRY

Class: X Score: 40 Time: 11/2 Hours

1-mark questions $(4 \times 1 = 4)$

- 1. p
- 2. A. (a)–(ii) (b)–(i) (c)–(iii)
- 3. Pure copper
- 4. A. Both correct, II explains I

2-mark questions $(7 \times 2 = 14)$

5. a) 1s² 2s² 2p⁶ 3s² 3p⁵ b) Group 17, Period 3

OR Configuration:

 $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^6\ 4s^2$

Exception: Actual $-1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

Reason: Half-filled d-subshell (3d⁵) is more stable

6. 11.2 L at STP = 0.5 mole \rightarrow Molar mass = 16 / 0.5 = 32 g mol⁻¹ Gas = Oxygen (O₂)OR T = 300 K, P = 2 atm, V = 5 L At STP: P = 1 atm, T = 273 K V₂ = (2 × 5 × 273) / (1 × 300) = 9.1 L

7.

Electrolyte	Product at Cathode	Product at Anode
Aqueous CuSO ₄ (Cu electrodes)	Copper	Oxygen
Acidified water	Hydrogen	Oxygen

- 9. OR Graphite is inert, does not react with molten alumina or oxygen produced at anode. Metal would react and contaminate aluminium.
- 10. A → Reduction / Smelting B → Leaching / Bayer's process C → Magnetic separation (for haematite) OR a) Homogeneous mixture of two or more metals / metal + non-metal. Example: Brass (Cu + Zn) b) High strength-to-weight ratio / corrosion resistant
- 11. Any two: Painting, oiling/greasing, electroplating, alloying, anodising, tin plating, enamel coating

3-mark questions $(6 \times 3 = 18)$

12. a) N shell b) 16 orbitals ($n^2 = 16$) c) Subshells: 4s (2e), 4p (6e), 4d (10e), 4f (14e) \rightarrow Total 32 electrons

OR a) 4s b) 1 electron c) s-block

- 13. a) $N_2 + 3H_2 \rightarrow 2NH_3$
 - b) Volume of NH₃ = $2 \times 5.6 L = 11.2 L$
 - c) Gay-Lussac's law of combining volumes OR a) 16 g O_2 = 0.5 mole b) 0.5×6.022
 - $\times 10^{23} = 3.011 \times 10^{23}$ molecules c) 11.2 L
- 14. a) Sodium (Na) or Potassium (K)
 - b) Magnesium (Mg) more reactive than iron, acts as sacrificial anode
 - c) No Copper is below zinc in reactivity series, less reactive
- 15. a) Hydrated ferric oxide \rightarrow Fe₂O₃ xH₂O
 - b) Coating aluminium with a thick layer of Al₂O₃ by electrolysis
 - c) Tin reacts with food acids → toxic compounds formed
- 16. a) Molten alumina (Al₂O₃) dissolved in cryolite (Na₃AlF₆)
 - b) Cathode: Al $^{3+}$ + 3e $^ \rightarrow$ Al Anode: 2O $^{2-}$ \rightarrow O $_2$ + 4e $^-$
 - c) To lower the melting point of alumina / increase conductivity
- 17. a) Sulphide ores (e.g., zinc blende, galena)
 - b) Collectors: Pine oil / xanthates; Frothers: Sodium ethyl xanthate c) Collectors adsorb on ore particles making them water-repellent (hydrophobic)

4-mark question $(1 \times 4 = 4)$

- 18. (A) Any FOUR a) Cu⁺: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^{10}$ fully filled d-subshell is more stable
 - b) $8.4 L = 0.375 \text{ mole} \rightarrow M = 14 / 0.375 = 37.33 \approx 38 \text{ g/mol (approx. HCl or Ar)}$
 - c) CO reduces $\mathrm{Fe_2O_3}$ to Fe and itself gets oxidised to $\mathrm{CO_2}$ / strong reducing agent at high temperature
 - d) Molten waste material; $CaSiO_3$ formed by reaction of SiO_2 impurity with CaO (limestone)
 - e) Utensils, surgical instruments, automobile parts, etc.
 - f) Good conductor of electricity and lightweight

OR (B)

- a) Volume doubles (600/300 = 2 times)
- b) Charles' law
- c) (i) $C_2H_2 + 2.5 O_2 \rightarrow 2CO_2 + H_2O(g)$ (or balanced as $C_2H_2 + 5/2 O_2 \rightarrow 2CO_2 + H_2O(g)$
- (ii) Gas = Acetylene (Ethyne); Gay-Lussac's law