SUMMATIVE ASSESSMENT III 2025-26 CHEMISTRY ANSWER KEY

Qn No.	Sub Qn.	Value point	Score	Total score
1		В	1	1
2		В	1	1
3		В	1	1
4		В	1	1
5	a	Ethers	1	2
	b	CH ₃ -CH ₂ -O-CH ₂ -CH ₃ , CH ₃ -O-CH ₂ -CH ₂ -CH ₃	1	
	a	Calamine	1	2
6A	b	$ZnCO_3 \rightarrow ZnO + CO_2$	1	
		OR	1	
6B	a	Electricity	1	2
	b	To reduce the melting point of alumina and to increase the electrical conductivity	1	
7	a	By the electrolysis of molten NaCl	1	2
	b	By the electrolysis of aqueous NaCl solution	1	
8	a	Boyle's law	1	2
	b	Statement of Boyle's law	1	
	a	25	1	2
9A	b	7	1	2
		OR		
	a	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$	1	2
9B	b	i) They form coloured compounds	1	
		ii) They exhibit variable oxidation states		
		(Any two properties of d-block elements)	1	
	a	CH ₃ CH ₃ - C - CH ₂ - CH ₃	1	
10		CH ₃		3
	b	C6H14	1	
	c	2,2-Dimethylbutane	1	
	a	Daniel cell	1	_
11	b	Zn	1	3
A	c	$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu / Zn^{2+} + Cu \rightarrow Zn + Cu^{2+}$ OR	1	
11	a	Aluminium sulphate solution / aqueous solution of any aluminium salt	1	
В	b	Mg to Al	1	3
	c	Mg > Al > Cu	1	

	a	NaOH	1	
12	b	Chlor alkali process	1	3
	С	NaOH increases the concentration of hydroxide ions in aqueous solutions	1	
13	a	It dissociates at high temperature to give CaO which acts as flux	1	3
	b	CO/ Carbon monoxide	1	
	c	Pig iron	1	
14A	a	3p - 4s - n+l = 3+1=4 $n+l = 4+0=4$	1	3
	b	4s has more energy because, as both have same $n+l$ values, 4s having higher n value is considered to have higher energy.	2	
		OR		
	a	3d	1	
14B	b	10	1	3
	c	5	1	
15	a	$N_2 + 3H_2 \rightarrow 2NH_3 + heat$	1	3
	b	When pressure is increased, the rate of forward reaction	1	
		increases		
	С	At lower temperatures, the number of molecules having threshold energy will be less and so 450°C is taken as optimum temperature.	1	
16A	a	Molecular mass of $CO_2 = 44$ No of moles of CO_2 in 176 g of $CO_2 = 176/44 = 4$ mols Volume of 1 mole CO_2 at $STP = 22.4$ L Volume of 4 moles of CO_2 at $STP = 4 \times 22.4 = 87.6$ L	2	4
	b	$C + O_2 \rightarrow CO_2$ 1 mole of C gives 1 mole of CO_2 For obtaining 4 mols of CO_2 , 4 mols of C should be burnt. Mass of 1 mol of $C = 12$ g Mass of 4 mols of $C = 4 \times 12 = 48$ g	2	
		OR	<u>I</u>	
Y	a	32 g	1	
16B	b	2 mols of H ₂ gives 2 mols of H ₂ O	2	4
		1 mol of H ₂ gives 1 mol of H ₂ O Volume of H ₂ required to give 22.4 L H ₂ O at STP = 22.4 L		
	c	2 mol H ₂ needs 1 mole of O ₂ 4g of H ₂ needs 32 g of O ₂	1	
	a	By the addition of 2H ₂ molecules/ chemical equation	1	
17	b	By the addition of 2 Cl ₂ molecules/ chemical equation	1	
	c	By the addition of HCl molecule/ chemical equation	1	4
	d	By the addition of HCl molecule followed by polymerisation/ chemical equation.	1	