	Class : XII				PHY	210	2	Re	g.No	
	Time : 3.00 H	ours			H-011	216			Ma	rks : 70
					PAR	T-1				15 × 1 =
Vot	(ii) C	nswer all hoose the ode and th	most	appropri	ate answe	r from	the give	en four alterr	atives	and write the option
	Which charge co a) point charge c) uniformly	nfiguration ge	n proc	luces a un			infinite	e uniform line mly charged s		
	A wire of resistant resistance between	nce 2 ohm en its two	s per diame	meter is be trically or	ent to form	a circ	le of radi and B as	ius 1m. The ec	uivale figure	ent is A
	α) πΩ	b) $\frac{\pi}{2}$	Ω) 2πΩ		d)	$\frac{\pi}{4} \Omega$		
	An object is place from the mirror.						rror and	its real image	is fon	med at a distance of 30
	a) 15 cm		b)	30 cm		()	60 cm		d)	45 cm
	A step-down tran		educe	s the supp	ly voltage	from 2	20 V to 1	11 V and incre	ase the	e current from 6 A to 10
	a) 1.2		b)	0.83		(c)			d)	0.9
•	Fraunhofer lines a) line emiss		mple		sorption	ectrun c)		emission	· d)	band absorption
	The radius of $^{64}_{29}$ (a) $1.2 F$	Cu nucleus	in fe	rmi is		c)	7.7 F		d)	9.6 F
	If the velocity an	d wavelen	gth o	f light in a	ir is V _o and	d λ _a and	that in	water is $V_{\rm w}$ an	d A _w , ti	hen the refractive index
	a) $\frac{V_w}{V_a}$		b)	$\frac{V_a}{V_w}$		c)	$\frac{\lambda_w}{\lambda_a}$		d)	$\frac{V_a}{V_w} \frac{\lambda_a}{\lambda_w}$
	The momentum a 1.3×10^{-27}	of the photos $kg m s^{-1}$	ton of	waveleng 1.3 × 10	th 5000 Å -28 kg m s	will b	4 × 10) ⁻²⁹ kg m s ⁻¹	d)	$4 \times 10^{-18} kg m s^{-1}$
).	The transverse na	ature of lig	tht is	shown in, diffraction		c)	scatter	67.5	(d)	polarisation
10.	The nucleus is ap a $A^2/3$	proximate	ly sp		shape. The		urface ar	rea of nucleus		g mass number A varies A ⁵ /3
11.	In electromagnet	ic wave th			nce between			and magnetic		
	а) п		b)	$\pi/2$	6	c)	$\pi/4$		d)	zero
12.	The variation of a) Amplitude c) Phase mod	with respe	spect to the amplitude of the modulating signal is called b) Frequency modulation d) Pulse width modulation							
13.	The strength of the distance $r/2$ will	he magnet be	ic fiel	d at distan	ce r near	a long	straight c	current carryin	g wire	is B. The field at a
	a) $\frac{B}{2}$		b)	$\frac{B}{4}$		c)	2 <i>B</i>		d)	48
14.	"Sky wax" is an a) Medicine	application		ano produ Textile	ct in the fi	eld of	Sports	6-1 - 7 ' Gr. p 2	d)	Automotive industry
15.		of capacit	ances	3μF are c	onnected	in a cir	cuit. The	m, their maxir	num a	nd minimum capacitane
	will be a) $9\mu F$, $0\mu F$		<i>b)</i>	8μF, 2μ	F	c)	9μF, 1	μ F	d)	3μF, 2μF 12-Physics-Pa

3.

Answer any six questions. Question no. 24 is compulsory:

- 16. Define electric flux.
- 17. In a meter bridge experiment, the value of resistance in the resistance box connected in the right gap is 10 Ω . The balancing length is $I_l = 55$ cm. Find the value of unknown resistance.
- 18. State Biot-Savart's law.
- 19. Mention the ways of producing induced emf.
- 20. Why does sky appear blue?
- 21. What is bandwidth of interference pattern?
- 22. Give any two applications of photocell.
- 23. Give the Barkhausen conditions for sustained oscillations.
- The radius of the 5th orbit of hydrogen atom is 13.25 Å. Calculate the de Broglie wavelength of the electron orbiting in the 5th orbit.

PART - III

 $6 \times 3 = 18$

Answer any six questions. Question no. 28 is compulsory:

- 25. Obtain the expression for energy stored in the parallel plate capacitor.
- State Kirchhoff's current and voltage rules.
- 27. Compare the properties of soft and hard ferromagnetic materials.
- 28. An inverter has inbuilt step-up transformer which converts 12 V AC to 240 V AC. The primary coil has 100 turns and the inverter delivers 50 mA to the external circuit. Find the number of turns in the secondary and the primary current.
- 29. Write short notes on (a) microwave (b) X-ray
- 30. Mention the differences between interference and diffraction.
- 31. A proton and an electron have same de Broglie wavelength. Which of them moves faster and which possesses more kinetic energy?
- 32. Give the results of Rutherford alpha scattering experiment.
- 33. State De Morgan's first and second theorem.

PART-IV

 $5 \times 5 = 25$

Answer all the questions:

6)

- 34. a) How the emf of two cells are compared using potentiometer?
 - (i) Give an account of magnetic Lorentz force.
 - (ii) Suppose a cyclotron is operated to accelerate protons with a magnetic field of strength 1 T. Calculate the frequency in which the electric field between two Dees could be reversed.
- 35. a) Calculate the electric field due to a dipole on its equatorial plane.

Or)

- b) Describe the Fizeau's method to determine the speed of light.
- 36. a) Obtain the law of radioactivity.

(or)

- b) Write down Maxwell equations in integral form.
- 37. a) Show that the mutual inductance between a pair of coils is same $(M_{12} = M_{21})$
 - b) Describe briefly Davisson Germer experiment which demonstrated the wave nature of electrons.
- 38. a) Explain the construction and working of a full wave rectifier.

(or)

Explain about compound microscope and obtain the equation for the magnification.