COMMON HALF YEARLY EXAMINATION - 2024	Reg. No.			
XII - MATHEMA	TICS			
Time Allowed : 3-00 Hrs.	,	Maximui	m Mark	s: 90
Part - I				
l. Choose the correct answer:	20 x 1 = 20			
[1 -2] [6 0]				

1. If
$$A \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 6 \end{bmatrix}$$
, then $A =$

a) $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$

2. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 and $A(\text{adj } A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = 0$

b) |z|²

4. If
$$\omega \neq 1$$
 is a cubic root of unity and $(1+\omega)^7 = A + B\omega$, then (A, B) equals a) $(1,0)$ b) $(-1 1)$ c) $(0,1)$ d) $(1,1)$

c) $\frac{3}{2}|z|^2$ d) $2|z|^2$

d) tan 2a

If the normal of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are

c) $\frac{3}{2}$

If
$$\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$$
, then $\cos 2u$ is equal to
a) $\tan^2 \alpha$ b) 0 c) -1

tangents to the circle
$$(x-3)^2 + (y+2)^2 = r^2$$
, then the value of r^2 is a) 2 b) 3 c) 1 d) 4

8. If the direction cosines of a line are
$$\frac{1}{c}$$
, $\frac{1}{c}$, $\frac{1}{c}$ then

a)
$$c = \pm 3$$
 b) $c \pm \sqrt{3}$ c) $c > 0$ d) $0 < c < 1$
The number given by the Rolle's theorem for the function $x^3 - 3x^2$, $x \in [0, 3]$ is

b) $\sqrt{2}$

$$\partial^2 f$$
 is equal to

a) $\frac{1}{2}|z|^2$

a) 1

10. If
$$f(x, y) = e^{xy}$$
, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to

a) $xy e^{xy}$ b) $(1 + xy) e^{xy}$ c) $(1 + y) e^{xy}$ d) $(1 + x) e^{xy}$

11. Linear approximation for
$$g(x) = \cos x$$
 at $x = \frac{\pi}{2}$ is

a)
$$x + \frac{\pi}{2}$$
 b) $-x + \frac{\pi}{2}$ c) $x - \frac{\pi}{2}$ d) $-x - \frac{\pi}{2}$

XII - Maths - 1

	14.	a) $y = ce^{\int p dx}$ b) $y = ce^{-\int p dx}$ c) b. If $P(X = 0) = 1 - P(X = 1)$. If $E[X] = 3 \text{ Var}(X)$, the		d) $x = ce^{\int pdy}$
		a) $\frac{2}{3}$ b) $\frac{2}{5}$ c)		d) $\frac{1}{3}$
	15.	5. The operation * defined by $a * b = \frac{ab}{7}$ is not a	binary operation	n on
	16.	a) Q^+ b) Z c) $\sin(\sin^{-1}x) = x$ if	R	d) C
		a) $ x \le 1$ b) $ x \ge 1$ c)	x < 1	d) $ x \leq \frac{\pi}{2}$
	17.	7. The non parametric form of a vector equation position vectors are \vec{a} and \vec{b} and parallel to		ough two points whose
			$\left[\vec{r}-\vec{a},\vec{u}-\vec{a},\vec{u}\right]$	
		c) $\left[\vec{r} - \vec{u}, \vec{a} - \vec{b}, \vec{u}\right] = 0$ d)	$\left[\vec{r}-\vec{a},\vec{b}-\vec{a},\vec{u}\right]=$	=0
	18.	 If f(x) is continuous on [a, b] then f has both abs in [a, b]. This statement is a) Extreme value theorem b) 	solute maximum Intermediate val	
	19.	c) Lagrange mean value theorem d) If X ~ B (n, p) then	Taylors theorem $\mu = nq, \sigma^2 = np($	1
,	20.		$\mu = np, \sigma^2 = nq($	
		a) $c = \frac{a}{m}$ b) $c = \frac{m}{a}$ c)	$c^2 = a^2 m^2 + b^2$	d) m = c
	II.	Answer any 7 questions. (Q.No.30 is comp	oulsory)	7 x 2 = 14
	21.	1. If $adj A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1}		
	22.	2. Show that the following equations represent a $ z-2-i =3$	a circle, and find	lits center and radius.
	23.	 Find a polynomial equation of minimum degree as a root. 	e with rational co	pefficients, having $2i + 3$
	24.	 Find the general equation of the circle whose opoints (-4,-2) and (1,1). 	diameter is the li	ine segment joining the
		XII - Maths -	2	
				, (*)

a) $\frac{1}{11000}$ b) $\frac{1}{10100}$ c) $\frac{1}{10010}$ d) $\frac{1}{10001}$

12. The value of $\int_{0}^{1} x(1-x)^{99} dx$ is

13. The solution of $\frac{dy}{dx} + p(x)y = 0$ is

25. Find the angle between the line $\vec{r} = (2\hat{i} - \hat{j} + \hat{k}) + t(\hat{i} + 2\hat{j} - 2\hat{k})$ and the plane $\vec{r} \cdot (6\hat{i} + 3\hat{j} + 2\hat{k}) = 8$

26. Evaluate the following:
$$\int_{0}^{\frac{\pi}{2}} \sin^{10} x \, dx$$

- Find the differential equation for the family of all straight lines passing through the origin.
- 28. Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images.
- 29. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find $A \lor B$ and $A \land B$.
- 30. Evaluate $\lim_{x\to\infty} \left(\frac{e^x}{x^m}\right)$, $m \in \mathbb{N}$

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

- $7 \times 3 = 21$
- 31. Find the rank of the matrix $\begin{vmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{vmatrix}$ by reducing it to an echelon form.
- 32. The complex numbers u, v and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$. If v = 3 4i and w = 4 + 3i, find u in rectangular form.
- 33. Solve the equation $x^3 5x^2 4x + 20 = 0$
- 34. Find the domain of $\cos^{-1}\left(\frac{2+\sin x}{3}\right)$
- 35. The maximum and minimum distances of the Earth'from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 36. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point.
- 37. Write the Maclaurin series expansion of the following function: $tan^{-1}(x)$; $-1 \le x \le 1$
- 38. Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 liters and a maximum of 600 liters with probability density function
- $f(x) = \begin{cases} k, & 200 \le x \le 600 \\ 0, & \text{Otherwise} \end{cases}$ Find (i) the value of k (ii) the distribution function
 - (iii) the probability that daily sales will fall between 300 liters and 500 liters?
- 39. Define an operation* on Q as follows a * b = $\left(\frac{a+b}{3}\right)$, a, b \in Q. Examine the closure, commutative, and associative properties satisfied by * on Q.
- 40. Evaluate $\int_{2}^{4} \frac{\sqrt{x}}{\sqrt{6-x} + \sqrt{x}} dx$

IV. Answer all the questions.

 $7 \times 5 = 35$

41 a) Solve the following systems of linear equations by Cramer's rule:

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0, \ \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0 \ \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$$
(OR)

b) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$$
 and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$

- 42. a) If z = x + iy and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$ (OR)
 - b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours?
- 43. a) If 2 + i and $3 \sqrt{2}$ are roots of the equation

$$x^6 - 13x^5 + 62x^4 - 126x^3 + 65x^2 + 127x - 140 = 0$$
 find all roots. (OR)

- b) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 meters deep?
- 44. a) Prove that $\tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2} = \tan^{-1} \left(\frac{3x-x^3}{1-3x^2} \right)$, $|x| < \frac{1}{\sqrt{3}}$ (OR)
 - b) If $u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$
- 45. a) A tunnel through a mountain for a four–lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately. How wide must the opening be?

(OR)

b) A random variable X has the following probability mass function:

Х	1	2	3	4	5
f(x)	k ²	2k ²	3k ²	2k	3k

Find (i) the value of k (ii) $P(2 \le X < 5)$ (iii) P(3 < X)

- 46. a) By vector method, prove that $cos(\alpha+\beta) = cos\alpha cos\beta sin\alpha sin\beta$ (*OR*)
 - b) Find the area of the region bounded between the parabolas $y^2 = x$ and $x^2 = y$
- 47. a) A rectangular page is to contain 24 cm² of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions of the page so that the area of the paper used is minimum?

(OR)

b) Prove that $p \to (\neg q \lor r) \equiv \neg q \lor (\neg q \lor r)$ using truth table.