Virudhunagar District Common Half Yearly Exam, December - 2024

Time: 3.00 Hours

Standard 12 MATHS PART-I

Marks: 90

Answer all the quesitons. Choose the correct answer:

20×1=20

1) If
$$A = \frac{\cos \theta}{-\sin \theta} \frac{\sin \theta}{\cos \theta}$$
 and $A(\text{adj }A) = \frac{K}{0} \frac{0}{K}$ then $K = \frac{1}{1} \frac{1}{K} \frac{$

- 4) Which of the following islare correct?
 - i) Adjoint of a symmetric matrix is also a symmetric matrix
 - ii) Adjoint of a diagonal matrix is also a diagonal matrix
 - iii) If A is a square matrix of order n and λ is a scalar, then $adj(\lambda A) = \lambda^n adj(A)$
 - iv) A(adj A) = (adj A) A = |A|I
- b) (ii) and (iii) c) (iii) and (iv) d) (i) (ii) and (iv)
- 5) If α and β are the roots of $x^2+x+1=0$, then $\alpha^{2020}+\beta^{2020}$ is
- b) -1
- c) 1
- d) 2

- 6) $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9}$ is equal to
 - a) $\frac{1}{2}\cos^{-1}\frac{3}{5}$ b) $\frac{1}{2}\sin^{-1}\frac{3}{5}$ c) $\frac{1}{2}\tan^{-1}\frac{3}{5}$
- d) $tan^{-1} \frac{1}{2}$

- The domain of cosec⁻¹x function is
 - a) R(-1, 1)
- b) R\[-1, 1] c) $-\frac{\pi}{2}, \frac{\pi}{2}$
- d) $R\setminus\{0\}$
- 8) The radius of the circle $3x^2+by^2+4bx-6by+b^2=0$ is

- b) 3
- c) $\sqrt{10}$
- d) √11
- 9) If two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles then the locus of P is
 - a) 2x+1=0
- b) x = -1
- c) 2x-1=0 d) x=1
- 10) With usual notation which one is not equal to $\vec{a} \cdot (\vec{b} \times \vec{c})$?
- a) $-\vec{a} \cdot (\vec{c} \times \vec{b})$ b) $\vec{c} \cdot (\vec{a} \times \vec{b})$ c) $-\vec{b} \cdot (\vec{c} \times \vec{a})$ d) $(\vec{c} \times \vec{a}) \cdot \vec{b}$
- 11) If \vec{a} and \vec{b} are unit vectors such that \vec{a} , \vec{b} , $\vec{a} \times \vec{b} = \frac{1}{4}$ then the angle between \vec{a} and \vec{b} is
- b) π_{4}
- c) $\frac{\pi}{3}$
- 12) Find the point on the curve $6y = x^3+2$ at which y-coordinate changes 8 times as fast as x-coordinate is
 - a) (4, 11)
- b) (4, -11) c) (-4, 11)
- d) (-4, -11)

R12	М	2						
13)	What is the value of	of the limit $\frac{\lim}{x \to 0} (cc)$	ot $x - \frac{1}{x}$?	r.				
	a) 0	b) 1	c) 2	d) ∞				
14)	If $v(x, y) = \log(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to							
	a) e ^x +e ^y	b) $\frac{1}{e^x + e^y}$	c) 2	d) 1				
15)	The solution of $\frac{dy}{dx}$	+P(x) y = 0 is						
	a) w co Pdx	b) $y = ce^{-Pdx}$	c) $x = ce^{-Pdy}$	d) $x = ce^{Pdy}$				
16)	The differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary constants is							
	ux	Circ	c) $\frac{dy}{dx} + y = 0$	d) $\frac{dy}{dx} - y = 0$				
17)	If $P(X = 0) = 1 - P(X = 1)$. If $E(X) = 3Var(X)$, then $P(X = 0)$							
	a) $\frac{2}{3}$	b) $\frac{2}{5}$	c) ½	d) $\frac{1}{3}$				
18)	A random variable X has binomial distribution with $n=25$ and $p=0.8$ the standard deviation of X is							
19)	a) 6	b) 4	c) 3 en the solution of 3*	d) 2 (y*5) = 7 is				
/		b) $y = -\frac{2}{3}$		d) y = 4				
20)		ollowing is incorrect						
	a) $\neg (p \lor q) \equiv \neg p \land \neg$		b) $\neg (p \land q) \equiv \neg p \lor \neg q$					
	c) $\neg (p \lor q) \equiv \neg p \lor \neg$	¬q	d) $\neg (\neg p) \equiv p$					

PART-II

Answer any 7 questions. (Question number 30 is compulsory)

 $7 \times 2 = 14$

21) Prove that
$$\begin{array}{c} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{array}$$
 is orthogonal

- 22) Find the square root of 4+3i
- 23) If α and β are the roots of the quadratic equation $17x^2+43x-73=0$, constuct a quadratic equation whose roots are $\alpha+2$, $\beta+2$.
- 24) Find the principal value of $\cos^{-1} \frac{1}{2}$
- 25) Identify the type of conic for the equation $4x^2-9y^2-16x+18y-29=0$.

26) If
$$\vec{a} = -3\vec{i} - \vec{j} + 5\vec{k}$$
, $\vec{b} = \vec{i} - 2\vec{j} + \vec{k}$, $\vec{c} = 4\vec{j} - 5\vec{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$

- 27) Verify Rolle's theorem for the function $f(x) = \tan x, x \in [0, \pi]$
- 28) Form the differential equation by eliminating the arbitrary constants A and B from $y = A \cos x + B \sin x$.
- 29) Construct a truth table for $p \overline{\vee} q$
- 30) Show that $f(x, y) = \frac{6x^2y^3 \pi y^5 + 9x^4y}{2020x^2 + 2019y^2}$ is a homogenous function of degree 3.

Answer any 7 questions. (Question number 40 is compulsory)

 $7 \times 3 = 21$

- 32) Show that $\frac{19+9i}{5-3i}^{15} \frac{8+i}{1+2i}^{15}$ is purely imaginary.
- 33) Show that the equation $x^9-5x^5+4x^4+2x^2+1=0$ has atleast 6 imaginary solutions.
- 34) Find the domain of $\sin^{-1}(2-3x^2)$
- 35) Find the equation of the parabola with vertex (1, -2) and focus (4, -2)

36) Evaluate:
$$\lim_{X \to \infty} \frac{x^2 + 17x + 29}{x^4}$$

37) Solve:
$$(1 + x^2) \frac{dy}{dx} = 1 + y^2$$

- 38) Suppose two coins are tossed once. If X denotes the number of tails (i) write down the sample space (ii) find the inverse image of 1 (iii) the values of the random variable and the number of elements in its inverse images.
- 39) Let A be $Q{1}$. Define * on A by x*y = x+y xy. is * a binary on A?
- 40) Find the distance between the planes $\hat{r} \cdot (2\hat{i} \hat{j} 2\hat{k}) = 6$ $\widehat{\mathbf{r}}.\left(6\widehat{\mathbf{i}}-3\widehat{\mathbf{j}}-6\widehat{\mathbf{k}}\right)=27$

PART-IV

Answer all the questions:

 $7 \times 5 = 35$

41) a] Investigate the values of λ and μ the system of linear equations 2x+3y+5z=9, 7x+3y-5z=8, $2x+3y+\lambda z=\mu$, have (i) no solution (ii) a unique solution (iii) an infinite number of solution.

(OR)

- b] Sketch the curve $y = f(x) = x^2 x 6$
- 42) a] If z = x+iy and arg $\frac{z-1}{z+1} = \frac{\pi}{2}$, show that $x^2+y^2 = 1$.

b] If
$$v(x, y, z) = x^3 + y^3 + z^3 + 3xyz$$
, show that $\frac{\partial^2 v}{\partial y \partial z} = \frac{\partial^2 v}{\partial z \partial y}$

43) a] Solve the equation: $x^4-10x^3+26x^2-10x+1=0$

(OR)

b] The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple?

44) a] If $tan^{-1}x+tan^{-1}y+tan^{-1}z=\pi$, show that x+y+z=xyz

(OR)

- b] Verify (i) closure property (ii) commutative property (iii) associative property (iv) existence of identity and (v) existence of inverse for the operation X_{11} on a subset $A = \{1, 3, 4, 5, 9\}$ of the set of remainders $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- 45) a) Find the equations of tangent and normal to the parabola $x^2+6x+4y+5=0$ at (1, -3)

(OR)

b] A random variable x has the following probability mass function

x	1	2	3	4	5	6
f(x)	К	2K	6K	5K	6K	10K

Find (i) P(2 < x < 6)

(ii) $P(2 \le X < 5)$ (iii) $P(X \le 4)$

(iv) P(3 < X)

- 46) a] By Vector method, prove that $\cos (\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ (OR)
 - b] Prove that the ellipse $x^2+4y^2=8$ and the hyperbola $x^2-2y^2=4$ intersect orthogonally.
- 47) a] On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.

(OR)

b] Find the parametric form of vector equation and Cartesian equation of the plane passing through the points (2, 2, 1) (9, 3, 6) and perpendicular to the plane 2x+6y+6z=9