COMMON HALF YEARLY EXAMINATION - 2024					
	♦ Bredstein ♦	s analism s	tandard XII	Reg.No.	
1,000	mejgikaron (1	MA	THEMATICS	The state of the s	M M'
l. 1.	a) negative	ar matrix of od b) zero	d order, then adj A is c) [adj A]	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ks:90 x1=20
2.	If the direction cost	nes of a line a	re $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$ then		
		b) $c = \pm \sqrt{3}$ ing is the principle.	c) c > 0 ciple value branch of c		
			c) [0,π]	2 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	聖者 上日 一一一
4.	The solution of the	differential eq	uation $2x \frac{dy}{dx} - y = 3$ re	presents from Math	n-(ë
	a) straight lines Centre (-3,-4) and a) $x^2 + y^2 + 6x + 8y$	b) circles radius 3 units	c) parabola then find the general $(x^2 + y^2 + 6)$	d) ellipse equation of the circle is	AE.
6.	If a, b, c are non-	coplanar, non-	-zero vectors such tha	$t \left[\vec{a}, \vec{b}, \vec{c} \right] = 3$, then	1619
42	$\{\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}\}$	2 is equal to	CANO 24 is computed	zooszopo 7 yns 10v	vana R
7.	a) 81 The polynomial x^3 a) $ k \le 6$	b) 9 - kx ² + 9x has b) k = 0	c) 27 s three real zeros if an c) k > 6) = 3 Var(X), then P(X	d) 18 d only if, k saljisfies	pe # 15
	a) $\frac{2}{3}$	b) $\frac{2}{5}$	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(d) - 101-10	emie si
1	a) 2 5-7116 3-3	h) 2.5	o) 3	at time t seconds is it in time t seconds is g	iven by
10.			defined as follows. W	hich one of the followin	
	a) length of the mile b) length of the let	nor axis	b) length of	d) $a^* b = a^b$ pse is equal to the major axis ity $a^3 - 3x^2, x \in [0, 3]$	ogque la makin which w
	a) 1	b) √2	c) $\frac{3}{2}$	The state of the s	is Neulova (6

Maths 13. If $\rho(A) = \rho([A/B])$, then the system AX = B of linear equations is a) consistent and has a unique solution

b) consistent d) inconsistent

and we sale to

c) consistent and has infinitely many solution 14. If $z + z^{-1} = 1$, then $z^{100} + z^{-100} =$

d) -1 . 46500.256 b) -i 15. The principle argument of (sin40° + i cos40°)2 is agreed 1 mag 3 st patronto

c) 70° bols also d) 110° d = 410 b) -70°

evitaben (a) 16. The point of inflection of the curve $y = (x - 1)^3$ is d) (1,1) c) (1,0) a)(0,0)b) (0,1)

17. Find the value of $\int \sin^4 x \cos^6 x dx$

slonger of the pravollor and to an d) $\frac{3}{256}$

18. A polynomial equation in x of degree n always has c) n complex roots ~d) atmost one root. a) n distinct roots b) n real roots.

19. If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$ then $\cos^{-1}x + \cos^{-1}y =$

2 · n = 2 · (d) π

20. If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is 3

a) 3 b) -1STOR SALL HE COST OF OR OR IN O.

II. Answer any 7 questions. (Q.No.30 is compulsory)

21. If $adjA = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1} as the second part of adjA = adjA =

HERX = 00 = 1 - FVX = 1 THE X) = 1 Ver(X) = 10 = X)S 22. Simplify $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.

23. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 - 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$

24. Find the equations of the tangent and normal to the circle $x^2 + y^2 = 25$ at P(-3, 4)

25. Find the acute angle between the straight lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ state whether they are parallel or perpendicular.

26. Suppose f(x) is differentiable function for all x with $f'(x) \le 29$ and f(2) = 17. What is the maximum value of f(7)?

27. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 3, and dx = 0.02. members in short only of March and individual

28. Evaluate: Jxcosxdx

30. Prove that in an algebraic structure the identity element (if exists) must be unique. "k notetas published est eve

about a consequence of a result 31. Find the rank matrix by minor method 2 .4 . -6 no an tipe of the standard 1001-1 100 s to dideo oromsis as at Pro-goliano tomando di 32. Find the square root of -5 - 12i

33. Is $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$ true? Justify your answer.

34. With usual notations, in any triangle ABC, prove by vector method that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

35. Evaluate: $\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 - 5x + 3}$

36. If
$$u(x,y) = \frac{x^2 + y^2}{\sqrt{x + y}}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$

37. The maximum and minimum distances of the Earth-from the Sun respectively are 152 x106 km and 94.5 x 106 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.

38. Find the differential equation of the family of circles passing through the origin and having their centres on the x -axis.

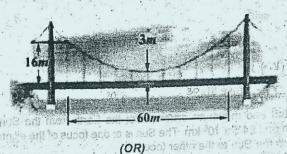
39. A pair of fair dies is rolled once. Fine the probability mass function to get the number of four.

40. Evaluate :
$$\int_{1}^{4} \left(\frac{8}{\sqrt{x}} - 12\sqrt{x^3} \right) dx$$

to into catematical and below of the Part - Dried and righted consess one

IV. Answer all the questions.

41. a) Investigate the values of λ and μ the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 5z = 8, $2x + 3y + \lambda z = \mu$ (i) no solution (ii) a unique solution (iii) an infinite number of solutions


b) If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$, show that x + y + z = xyz

42. a) Find all cube roots of $\sqrt{3} + i$ and we (OR) and some some prior of the state of the st

probability fact dary sales will left before

b) Prove that $\int_{0}^{4} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$

- 43. a) Prove that among all the rectangle of the given perimeter, the square has the
 - b) Prove by vector method that $sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$
- 44. a) Solve the following equation $x^4 10x^3 + 26x^2 10x + 1 = 0$
- (£5.6) x A radioactive isotope has an initial mass 200mg , After two years it is decreased by 50mg. Find the expression for the amount of the isotope remaining at any time. What is its half-life? (half-life means the time taken for the radioactivity of a specified isotope to fall to half its original value) horten ronim vd xhren sher our bra
- Parabolic cable of a 60m portion of the roadbed of a suspension bridge are positioned as shown below. Vertical Cables are to be spaced every 6m along this 45. a) portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex. evota : 08A: elenent yns

b). Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function ad once liftie the prebability mass fund

$$f(x) = \begin{cases} k & 200 \le x \le 600 \\ 0 & \text{Otherwise} \end{cases}$$
, Find (i) the value of k (ii) the distribution function (iii) the probability that daily sales will fall between 300 litres and 500 litres?

46 a) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$$
 and $\frac{x+3}{2} = \frac{y+3}{-5} = \frac{z+1}{3}$ (OR)

- b) Find the area of the region common to the circle $x^2 + y^2 = 16$ and the parabola $v^2 = 6x$
- 47. a) Find the equations of tangent and normal to the curve given by $x = 7 \cos t$ and y = 2 sin t, t ∈ R at any point on the curve (OR)
 - Using the equivalence property, Show that $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$