SCERT FIRST TERM MODEL QUESTION PAPER 2025

ANSWER KEY STD 10 MATHEMATICS

Section A

Q1. Sequence: $1, 7, 13, \ldots \to a_n = 6n - 5$.

Check 61, 81, 91, 121. Only 81 is not a term.

Answer: 81 (B)

Q2.

- A: If 5th term = 8, then 3rd + 7th = 16 (True).
- B: (x + k) + (x k) = 2x (True).

B explains A.

Answer: (iii)

Q3.

(A) 4th term = 80, 7th = 60.

$$a + 3d = 80$$
, $a + 6d = 60$ $\rightarrow d = -20/3$, $a = 100$.

10th term = 40, First term = 100.

- (B) Seq: 8,15,22,... (d=7).
- (i) Yes, difference 56 possible.
- (ii) 302 = 43rd term.

Answer: 40, 100; Yes; 43

Q4.

$$S_5 = 40, S_{13} = 260.$$

From formulas $\rightarrow a = 2, d = 3$.

3rd = 8, 7th = 20, first three terms: 2,5,8.

Answer: 8, 20, 2,5,8

Q5.

$$S_8 = 240.$$

(i)
$$t_4 + t_5 = 60$$
.

(ii) Given
$$t_3=15$$
 \rightarrow $a=-5, d=10$. So $t_6=45$.

(iii) Examples:

- 9,15,21,...
- 2,10,18,...
- · -12,0,12,...

Answer: 60, 45, and sequences above

Section B

Q6.
$$x_n = 7 - 5n$$
. Difference = -5.

Answer: subtract 5 (B)

Q7.
$$x^2 - 6x + 9 = (x - 3)^2$$
. Touches x-axis at 3.

V

Answer: 3 (A)

Q8.
$$a_n = 6n - 3 = 3(2n - 1)$$
.

$$(a_n)^2 = 9(2n-1)^2 = 9 \times \text{odd}.$$

Answer: Proved

Q9.

$$x+y=6, xy=7$$
. Roots = $3\pm\sqrt{2}$.

Answer: $3+\sqrt{2}$, $3-\sqrt{2}$

Q10.

Seq1: 5,11,17,...; Seq2: 8,14,20,... (d=6).

- (i) 4th terms = $23,26 \rightarrow \text{difference} = 3$.
- (ii) Sum difference = 75.

Answer: 3; 75

Q11.

Sums: 5,16,33,... → terms: 5,11,17,... (d=6).

General: 6n-1.

Answer: $5{,}11$ and $a_n = 6n-1$

Q12.

(A) Rectangle: sides 10, 24.

(B) Triangle: 8, 15, 17.

Answer: 10,24 or 8,15,17

Q13.

- (A) Odd remainders on $\div 6 \rightarrow$ odd numbers, AP with d=2, sum = n^2 .
- (B) a=4, d=3.
- (i) Sum10=175, (ii) Sum(2-11)=205, (iii) 500 impossible.

Answer: n2; or 175,205,No

Q14.

Seq: 6,10,14,... a=6,d=4.

$$S_n = 2n(n+2).$$

Solve $2n(n+2)=880 \rightarrow n=20$.

Answer: 2n(n+2); 20

Section C

Q15. Numbers with $\{3,8,9\}$, no repetition \rightarrow 6 total.

 $< 800 \rightarrow 2$ cases. Probability = 1/3.

Answer: 1/3 (A)

Q16. Both are $60^{\circ}/360^{\circ}$ sectors. So p=q.

Answer: (D) p=q

Q17.

(i) Inside circle = 1.

(ii) Inside segment = (sector-triangle)/circle area.

Answer: 1 and formula

Q18. Total 900 numbers (100-999).

Those $\equiv 3 \mod 4 = 225$.

Probability = 225/900 = 1/4.

Answer: 1/4

Q19.

- (A) Two dice:
- (i) Both odd = 9/36=1/4.
- (ii) Sum odd = 18/36=1/2.
- (iii) Product odd = 1/4.
- (B) Class selection:
- (i) 12/49, (ii) 24/49, (iii) 37/49.

Answer: 1/4,1/2,1/4; or 12/49,24/49,37/49

Section D

Q20. Use cyclic quadrilateral test \rightarrow depends on figure.

Answer: check position using inscribed angle theorem

Q21. A: Inscribed angle theorem (true).

B: Exterior angle theorem (true).

B explains A.

Answer: (iii)

Q22. Inscribed angle=18° → central=36°.

Arc length = $(36/360)(2\pi \times 10) = 2\pi$.

Answer: 2π cm

Q23.

- (A) Pentagon inscribed in circle → marked angle can be found using central angles (72°).
- (B) AB \perp CD \rightarrow arcs APC+BQD form semicircle.

Answer: proof

Q24.

- (A) Use alternate segment theorem.
- (B) $x+y=90^{\circ}$.

Answer: all triangle angles; or x+y=90

Q25. Cyclic quadrilateral → opposite angles sum=180. Use given values.

Answer: angles computed from given data

Q26. Construction: Circle radius 3 cm, draw triangle with angles 22½°, 32½°, remaining =125°.

Answer: triangle 221/2°, 321/2°, 125°