HIGHER SECONDARY FIRST TERMINAL EXAMINATION

		Max. Sc	ore :60
September : 2024	Part III	Time	: 2 Hrs
Second Year	MATHEMATICS (SCIENCE)	Cool- off T	'ime : 15 Mts.

Answer any 6 questions from 1 to 8. Each carries 3 scores

==========

1. Show that the relation R in the set Z of integers given by		
$R = \{(x, y) : x - y \text{ is a multiple of } 2\}$ is an equivalence relation		
2. Find all points of discontinuity of the function, $f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$	[3]	
3. (a) Give an example of a relation on set $A = \{1, 2, 3, 4\}$ which is reflexive, symmetry	tric	
but not transitive	[1]	
(b) Show that the function $f(x) = 8x + 2$ is one – one and onto	[2]	
4.Consider the matrix $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$		
(a) Find A ²	[2]	
(b) Find k so that $A^2 = kA - 2I$	[1]	
5. (a) If $\begin{vmatrix} x & 3 \\ 1 & x \end{vmatrix} = \begin{vmatrix} 6 & 0 \\ 2 & 1 \end{vmatrix}$ the value of x is	[1]	
(b) Find the area of a triangle whose vertices are (1,0), (6,0) and (4,3)	[2]	
6. The graph of a function is given below :		

(a) Write the domain of the function	[1]
(b) Write the range of the function	[1]
(c) Identify the function	[1]
(1)	P.T.O

7. ((a) What is the value of	f sin ⁻¹ (sin 160 ⁰)				
	(i) 160 ⁰	(ii) 70 ⁰	(iii) -20 ⁰	(iv) 20 ⁰	[1]	
	(b) Show that $\sin^{-1}(2x)$	$x\sqrt{1-x^2}) = 2\sin^-$	⁻¹ x		[2]	
8.	Find $\frac{dy}{dx}$, where $x^2 + y^2$	+ xy = 100			[3]	
	Answer any	<u>6 questions from</u>	<u>n 9 to 16. Each c</u>	<u>earries 4 scores</u>		
9.	(a) Consider A = {1, 2,	3}. The number of	of one - one functi	ons from A to itself	is	
	(i) 2	(ii) 3	(iii) 6	(iv) 8	[1]	
	(b) Find fog and gof fo	r the real functio	$f(x) = 8x^3$ and	$d g(x) = x^{\left(\frac{1}{3}\right)}$	[3]	
10.	(a) If A is a singular n	natrix then $ A $:	=		[1]	
	(b) Given that $\begin{bmatrix} 2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & 5 \end{bmatrix}$ is a singular matrix. Find the value of x.					
11.	Find 'a' and 'b' such th	nat the function o	defined by $f(x) = -$	$ \begin{cases} 10 , & x \le 3 \\ ax + b , & 3 < x < 4 \\ 20 , & x \ge 4 \end{cases} $	is a	
	continuous function.				[4]	
12.	12 . (a)Construct a 2 × 2 matrix $A = [a_{ij}]$, where $a_{ij} = 2i - j$			[2]		
	(b)Express A as the sum of symmetric and skew symmetric matrices			[2]		
13.	13. (a) Write the principal value branch of $\sin^{-1}(x)$			[1]		
	(b) Find the value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$					
14. (a) If $x = \sin^{-1}\left(\frac{3}{5}\right)$, then which of the following is true ?						
	(i) $x = \cos^{-1}\left(\frac{5}{3}\right)$)	(ii) $x = \tan^{-1}\left(\frac{3}{4}\right)$			
	(iii) $x = cosec^{-1}$	$\left(\frac{5}{4}\right)$	(iv) $x = \cot^{-1}\left(\frac{3}{4}\right)$		[1]	
	(b) Write following in	simplest form ta	$n^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right], \ 0 < 1$	x < π	[3]	
15.	(a) Find the derivativ	e of $\cos(2x+3)$			[2]	
	(b) Find $\frac{dy}{dx}$ if $x + 2y =$	e ^x			[2]	
16.	Find $\frac{dy}{dx}$ if $y = x^x + x^s$	nx			[4]	
<u>Answer any 3 questions from 17 to 20. Each carries 6 scores</u>						
17.	(a) Find $\frac{dy}{dx}$ if $x = 2at$,	$y = at^2$, when	re 't' is the param	eter	[3]	
	(b) If $y = \tan^{-1}(x)$, pro-	ve that $(1 + x^2)$ y	x'' + 2xy' = 0		[3]	
			(2)		P.T.0	

- **18.** Consider the set A = $\{1, 2, 3, 4, 5\}$, B = $\{1, 4, 9, 16, 25\}$ and a function f: A \rightarrow B defined by f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16 and f(5) = 25
 - (a) Show that f is bijective
 - (b) Find f^{-1}
 - (c) Using the following function $f: R \to R$, state whether the function is one one or onto. Give reason [2]

19.Consider A =
$$\begin{bmatrix} 2 & -6 \\ 1 & 2 \end{bmatrix}$$
 and given A – 3B = $\begin{bmatrix} 5 & -3 \\ -2 & -1 \end{bmatrix}$

- (a) Find matrix B [2]
- (b) Find A' and B' [1]
- (c) Show that (AB)' = B'.A' [3]

20. (a) Show that the system of equations x - y + 2z = 7

$$3x + 4y - 5z = -5$$

 $2x - y + 3z = 12$ is consistent [1]

[3]

[1]

[5]

(b) Solve the above system using matrix method.

======L======