SECOND YEAR HIGHER SECONDARY FIRST TERMINAL EXAMINATION – 2024

Part – III

Time: 2 Hours

CHEMISTRY

Cool-off time: 15 Minutes

(1)

(1)

Maximum: 60 scores

SECTION A

Answer *any four* questions from 1 to 5. Each carry 1 score. $(4 \times 1 = 4)$

- 1. Which of the following is not a colligative property? (A) Osmotic pressure (B) Elevation of boiling point (C) Vapour pressure (D) Depression of freezing point
- 2. The unit of rate constant for a first order chemical reaction is
- 3. The cell potential of mercury cell is nearly
 - (A) 1.50 V (B) 1.35 V (C) 1.91 V (D) 1.10 V
- 4. Among the following oxides of vanadium, which is amphoteric in nature? (A) V_2O_3 (B) V₂O₄ (C) V₂O₅ (D) None of these
- 5. The product formed at the cathode during the electrolysis of aqueous solution of NaCl is

SECTION B

Answer *any eight* questions from 6 to 15. Each carry 2 scores. $(8 \times 2 = 16)$

- 6. State Henry's Law. Write any one application of this law.
- 7. The vapour pressure of pure liquids A and B are 600 mm of Hg and 800 mm of Hg respectively. Calculate vapour pressure of the solution in which mole fraction of B is 0.6.
- 8. What is abnormal molar mass? How can it be corrected?
- 9. Write the anode and cathode reactions occur during the discharging of a lead storage battery.
- 10. a) Represent the galvanic cell based on the cell reaction given below:

 $Cu_{(s)} + 2Ag^+_{(aq)} - Cu^{2+}_{(aq)} + 2Ag_{(s)}$

b) Write the half-cell reactions of the above cell.

- 11. Calculate the time required for the 90% completion of a first order reaction ($k = 0.2303 \text{ s}^{-1}$).
- 12. Write any two differences between molecularity and order of a reaction.
- 13. What is a zero order reaction? Write the integrated rate equation for a zero order reaction.
- 14. Transition elements show various oxidation states. Give reason for variability of oxidation state.
- 15. Calculate the 'spin only' magnetic moment of $M^{2+}_{(aq)}$ ion (Z = 25).

SECTION C

Answer any eight questions from 16 to 26. Each carry 3 scores.	(8 × 3 = 24)
16. (i) What are Ideal solutions?	(1)
(ii) Mixture of two liquids A and B form an ideal solution. Draw the vapour pr	essure –
composition graph for this solution.	(2)
17. (i) What are azeotropes?	(1)
(ii) What is reverse osmosis? Mention any one of its applications.	(2)
18. (i) What are fuel cells?	(1)
(ii) Write any two advantages of fuel cells.	(1)
(iii) Write the net reaction taking place in a $H_2 - O_2$ fuel cell.	(1)

19. (i) Define molar conductivity.	(1)
(ii) Explain the variation of molar conductivity with concentration for strong and	weak
electrolytes.	(2)
20. (i) State Faraday's first law of electrolysis.	(1)
(ii) A solution of Ni(NO $_3$) $_2$ is electrolysed between platinum electrodes using a c	urrent of
5 amperes for 20 minutes. What mass of Ni is deposited at the cathode? (Atomi	c mass of Ni =
58.7 g mol ⁻¹)	(2)
21. (i) What do you mean by rate of a chemical reaction?	(1)
(ii) The initial concentration of the first order reaction, $N_2O_{5(g)} \longrightarrow 2 NO_{2(g)} + \frac{1}{2} O_{2(g)}$, was 1.24 x	
10^{-2} mol L ⁻¹ at 300 K. The concentration of N ₂ O ₅ after 1 hour was 0.20 x 10^{-2} mol	L ⁻¹ . Calculate
the rate constant of the reaction at 300 K.	(2)
22. (i) Write Arrhenius equation.	(1)
(ii) The rate constant for a first order reaction becomes 4 times, when the temp	erature is raised
from 350 K to 370 K. Calculate the activation energy for the reaction (R = 8.314 .	J K ⁻¹ mol ⁻¹). (2)
23. (i) Define half-life period (t_{2}) of a reaction.	(1)
(ii) By deriving the equation for $t_{1\!\!2}$ of a first order reaction, prove that $t_{1\!\!2}$ is indep	endent initial
concentration of reacting species.	(2)
24. How do you prepare K ₂ Cr ₂ O ₇ from chromite ore?	
25. (i) Zn (atomic number = 30) is not a transition element, though it is a d block ele	ment. Why? (1)
(ii) Which is more paramagnetic, Fe ²⁺ or Fe ³⁺ ? Why?	(2)
26. (i) E ⁰ (std. electrode potential) values generally become less negative as we mov	ve across a
transition series, but in first row transition series elements, E ⁰ values of Ni ²⁺ /Ni	and Zn ²⁺ /Zn are
more negative than expected. Why?	(2)
(ii) Name the first row transition series element which has a positive E ⁰ value.	141
	(1)
SECTION D	(1)
	(1) (4 × 4 = 16)
SECTION D	
SECTION D Answer <i>any four</i> questions from 27 to 31. Each carry 4 scores.	(4 × 4 = 16) (1)
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties?	(4 × 4 = 16) (1)
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preference	(4 × 4 = 16) (1) red to other (1)
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferr colligative properties. Why?	(4 × 4 = 16) (1) red to other (1)
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferr colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferr colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why?	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O2 added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg material states) 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) (1) is to be ol ⁻¹) (3)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O2 added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg material states) 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) (1) is to be ol ⁻¹) (3)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O) added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg massion) 29. Consider the pseudo-order reaction, CH3COOC2H5 + H2O → CH3COOH + C2H3COOH + C3H3COOH + C3H3COOH	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O) added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg me 29. Consider the pseudo-order reaction, CH3COOC2H5 + H2O — H⁺ → CH3COOH + C2H (i) Identify the order and molecularity of the above reaction. 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) (1) is to be ol ⁻¹) (3) H ₅ OH (2)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferre colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C₁₂H₂₂O) added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg me 29. Consider the pseudo-order reaction, CH₃COOC₂H₅ + H₂O → CH₃COOH + C₂H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) ¹¹) is to be ol ⁻¹) (3) H ₅ OH (2) (1)
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C ₁₂ H ₂₂ O) added to 500g of water such that it boils at 100°C ? (For water, K _b = 0.52 K kg me 29. Consider the pseudo-order reaction, CH ₃ COOC ₂ H ₅ + H ₂ O $\xrightarrow{H^+}$ CH ₃ COOH + C ₂ H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction when the concentration of the above reaction.	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O) added to 500g of water such that it boils at 100°C ? (For water, Kb = 0.52 K kg mathematical solution) is used. The pseudo-order reaction, CH3COOC2H5 + H2O → CH3COOH + C2H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction when the concentration of doubled? 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C12H22O) added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg mmines 29. Consider the pseudo-order reaction, CH3COOC2H5 + H2O → CH3COOH + C2H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction when the concentration of doubled? 30. (i) State Kohlrausch law of independent migration of ions. 	(4 × 4 = 16) (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1) (1)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferre colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C₁₂H₂₂O) added to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg medded to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg medded to 500g of water such that it boils at 100°C? (For water, K_b = 0.52 K kg medded to 100°C and the pseudo-order reaction, CH₃COOC₂H₅ + H₂O → CH₃COOH + C₂H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction. (iii) What happens to the rate of the above reaction when the concentration of doubled? 30. (i) State Kohlrausch law of independent migration of ions. (ii) The molar conductivity (Λ_m) of 0.001 M acetic acid is 4.95 x 10⁻⁵ S cm² mol⁻¹. 	$(4 \times 4 = 16)$ (1) red to other (1) t of 0.9% NaCl (2) (1) n1) is to be ol ⁻¹) (3) h ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1) (1) Calculate the
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferred colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C₁₂H₂₂O) added to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mediated to 500g of water such that the above reaction. (ii) Identify the order and molecularity of the above reaction. (iii) What happens to the rate o	$(4 \times 4 = 16)$ (1) red to other (1) t of 0.9% NaCl (2) (1) n1) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1) (1) Calculate the y (λ_m^0) for H ⁺ is
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preference colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C ₁₂ H ₂₂ O) added to 500g of water such that it boils at 100°C? (For water, K _b = 0.52 K kg me 29. Consider the pseudo-order reaction, CH ₃ COOC ₂ H ₅ + H ₂ O $\xrightarrow{H^+}$ CH ₃ COOH + C ₂ H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction when the concentration of a doubled? 30. (i) State Kohlrausch law of independent migration of ions. (ii) The molar conductivity (A _m) of 0.001 M acetic acid is 4.95 x 10 ⁻⁵ S cm ² mol ⁻¹ .	$(4 \times 4 = 16)$ (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1) (1) Calculate the y (λ_m^0) for H ⁺ is (3)
 SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preferencolligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to the solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C₁₂H₂₂O; added to 500g of water such that it boils at 100°C ? (For water, K_b = 0.52 K kg mming) 29. Consider the pseudo-order reaction, CH₃COOC₂H₅ + H₂O → CH₃COOH + C₂H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction. (iii) The molar conductivity (Λ_m) of 0.001 M acetic acid is 4.95 x 10⁻⁵ S cm² mol⁻¹. 30. (i) State Kohlrausch law of independent migration of ions. (iii) The molar conductivity (Λ_m) of 0.001 M acetic acid is 4.95 x 10⁻⁵ S cm² mol⁻¹. 31. (i) What is meant by lanthanoid contraction? 	$(4 \times 4 = 16)$ (1) red to other (1) t of 0.9% NaCl (2) (1) t of 0.9% NaCl (2) (1) (1) t of 0.9% NaCl (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
SECTION D Answer any four questions from 27 to 31. Each carry 4 scores. 27. (i) What do you mean by colligative properties? (ii) For determining the molecular mass of polymers, osmotic pressure is preference colligative properties. Why? (iii) For intravenous injections only solutions with osmotic pressure equal to that solution is used. Why? 28. (i) State Raoult's law. (ii) Boiling point of water at 750 mm Hg is 99.63°C. How much sucrose (C ₁₂ H ₂₂ O) added to 500g of water such that it boils at 100°C? (For water, K _b = 0.52 K kg me 29. Consider the pseudo-order reaction, CH ₃ COOC ₂ H ₅ + H ₂ O $\xrightarrow{H^+}$ CH ₃ COOH + C ₂ H (i) Identify the order and molecularity of the above reaction. (ii) Give the rate law expression for the above reaction. (iii) What happens to the rate of the above reaction when the concentration of a doubled? 30. (i) State Kohlrausch law of independent migration of ions. (ii) The molar conductivity (A _m) of 0.001 M acetic acid is 4.95 x 10 ⁻⁵ S cm ² mol ⁻¹ .	$(4 \times 4 = 16)$ (1) red to other (1) t of 0.9% NaCl (2) (1) 11) is to be ol ⁻¹) (3) H ₅ OH (2) (1) CH ₃ COOC ₂ H ₅ is (1) (1) Calculate the y (λ_m^0) for H ⁺ is (3)