KENDRIYA VIDYALAYA SITAPUR (SHIFT -1)

Unit Test -01 (2024-25) Class : XI

Mathematics (Code-041)

Time Allowed:90 minutes

Maximum Marks:40

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each part is compulsory.
- 2. Section A has 8 multiple choice type questions and 1 assertion reasoning question of 1 mark each.
- 3. Section- B has 4 short answer type questions of 2 marks each.
- 4. Section- C has 3 short answer type questions of 3 marks each.
- 5. Section- D has 2 long answer type questions of 5 marks each.
- 6. Section- E has 1 case based question of 4 marks.
- 7. There is an internal choice in some of the questions.

7. There	e is an internal choice in some of the questions.		
Q.NO.	SECTION – A (Multiple Choice Questions)		
1.	If $A \cap B' = \emptyset$ then		
	(a) $A \subset B$ (b) $B \subset A$ (c) $A = B$ (d) none of t	these	
2.	If $[x]^2 - 5[x] + 6 = 0$, where [] denote greatest integer function, then		
	(a) $x \in [3,4]$ (b) $x \in (2,3]$ (c) $x \in [2,3]$ (d) $x \in [2,4)$		
3.	If $\alpha + \beta = \frac{\pi}{4}$, then the value of $(1 + \tan \alpha)(1 + \tan \beta)$ is		
	(a) 1 (b) 2 (c) -2 (d) None of these		
4.	The conjugate of $(5 + 2i)^2$ is	1	
	(a) $5 - 2i$ (b) $21 - 20i$ (c) $6 - 17i$ (d) None of these		
5.	The number of subsets of a set containing 5 elements is		
	(a) 10 (b) 25 (c) 32 (d) none of these	e	
6.	If $\left(\frac{x}{2} + 1, y - \frac{2}{3}\right) = \left(\frac{3}{2}, \frac{1}{3}\right)$, the value of $2x + y$ will be	1	
	(a)4 (b)3 (c)0 (d)None of these		
7.	The greatest value of sinx cosx is		
	(a) 1 (b) 2 (c) $\sqrt{2}$ (d) $\frac{1}{2}$		
8.	If $z = \frac{1}{(2+3i)^2}$ then $ z =$	1	
	(a) $1/\sqrt{13}$ (b) $1/13$ (c) $\sqrt{13}$ (d) 13		
9	In the following question, a statement of assertion (A) is followed by a state Reason (R). Choose the correct answer out of the following choices. a) Both A and R are true and R is the correct explanation of A. b) Both A and R are true but R is not the correct explanation of A. c) A is true but R is false. d) A is false but R is true.	ement of 1	

	Assertion (A): If $A = \{1,2,3\}$, $B = \{2,4\}$, then number of relation from A to b is equal to 32.	
	Reason (R): The total number of relation from set A to set B is equal to $2^{n(A).n(B)}$.	
	SECTION B	
10	Find the value of $\sin(\frac{-11\pi}{3})$ OR	2
	A wheel makes 360 revolutions in one minute. Through how many radians does it	
	turn in one second?	
11	Let $A = \{1,2,3 \dots 14\}$. Define a relation R from set A to A by	2
	$R = \{(x,y): 3x - y = 0, where x, y \in A\}$. Write down the domain, co domain and	
	range.	
12	Find the multiplicative inverse of : $\frac{5+2i}{3+i}$ in a+ib form	2
13	Solve for x and y: $(x + iy) (2 - 3i) = 4 + i$	2
	SECTION C	
14	Let A and B be two sets. If $A \cap X = B \cap X = \emptyset$ and $A \cup X = B \cup X$ for some set X, show that $A = B$.	3
15	Find domain and range of the function $f(x) = \sqrt{9 - x^2}$	3
	OR	
	Find domain and range of the function $f(x) = \frac{x^2}{1+x^2}$	
16	If $\tan x = \frac{-4}{3}$, x lies in quadrant II, Find the value of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$.	3
	SECTION D	
17.	Prove that: $\cos^2 x + \cos^2 (x + \frac{\pi}{3}) + \cos^2 (x - \frac{\pi}{3}) = \frac{3}{2}$	5
	OR	
	Prove that: $\cos 2x \cos \frac{x}{2} - \cos 3x \cos \frac{9x}{2} = \sin 5x \sin \frac{5x}{2}$	
18	Find real θ such that $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is purely real.	5
	SECTION E (CASE BASED QUESTION)	
19	A, B and C are three sets and U is the universal set given as follows:	1+1+2
	$A = \{1, 2, 3, 5, 7, 9\}$	
	$B = \{ 2, 4, 6, 8 \}$	
	$C = \{2, 3, 5, 7\}$ And $H = \{1, 2, 2, \dots, 10\}$ Then	
	And $U = \{1, 2, 3, \dots, 10\}$ Then	
	(a) Represent the above set in the form of Venn diagram.	
	(b) Find $(AUB) - (A \cap C)$	
	(c) Verify that (AUB)' = $(A' \cap B')$	