Physics Standard X: Sound Waves Short Answer Questions

Exar. Comprehensive Question Bank with Answers for Examinations

1 Short Answer Questions and Answers

1.1 Oscillatory Motion

- 1. What type of motion does a swing exhibit? Why is it not considered circular motion?
 - Answer: A swing exhibits oscillatory motion because it moves to and fro about its equilibrium position at regular intervals. It is not circular motion as it does not complete a full circular path but oscillates between two extreme positions (e.g., A and B around O).
- 2. Define amplitude in the context of a swing's motion. What is its SI unit?
 - Answer: Amplitude is the maximum displacement of the swing from its equilibrium position to one side (e.g., from O to A). Its SI unit is the meter (m).
- 3. When does a swing complete one oscillation if it starts from the equilibrium position (O)?
 - Answer: A swing completes one oscillation when it starts from O, moves to A, then to B, and returns to O.
- 4. If a pendulum takes 1 minute to complete 30 oscillations, calculate the time for one oscillation.
 - Answer: Time for 30 oscillations = 60 s. Time for 1 oscillation = $\frac{60}{30} = 2$ s.
- 5. What is the frequency of a pendulum that completes 30 oscillations in 60 seconds?
 - Answer: Frequency = $\frac{\text{Number of oscillations}}{\text{Time}} = \frac{30}{60} = 0.5 \text{ Hz}.$

1.2 Period and Frequency

- 1. Define the period of a pendulum and state its SI unit.
 - Answer: The period (T) is the time taken to complete one oscillation, measured in seconds (s).
- 2. What is the relationship between the period and frequency of a pendulum?

• Answer: Frequency (f) is the reciprocal of the period (T): $f = \frac{1}{T}$. If the period increases, the frequency decreases.

- 3. How does the frequency of a simple pendulum change when its length increases?
 - **Answer**: As the length of the pendulum increases, the frequency decreases because the period increases.
- 4. Convert 1 MHz to Hz and explain its relevance in sound applications.
 - Answer: $1 \text{ MHz} = 10^6 \text{ Hz} = 1,000,000 \text{ Hz}$. This unit is used in radio and television transmissions to denote high-frequency signals.

1.3 Tuning Forks and Natural Frequency

1. What does the marking on a tuning fork (e.g., 256 Hz) indicate?

• Answer: The marking indicates the natural frequency of the tuning fork, i.e., the number of vibrations it produces per second (256 vibrations per second).

2. List two factors that influence the natural frequency of an object.

• Answer: Length of the object and elasticity of the material.

1.4 Forced Vibration and Resonance

1. What is forced vibration? Provide an example.

• Answer: Forced vibration occurs when an object vibrates due to an external vibrating source. Example: A table vibrates when a tuning fork is pressed against it.

2. Explain resonance with an example from the chapter.

• Answer: Resonance occurs when the natural frequency of a forced object matches that of the forcing object, resulting in maximum amplitude. Example: Hacksaw blades C and E vibrate with maximum amplitude when blade A (with the same natural frequency) is excited.

3. How does a stethoscope utilize forced vibration and resonance?

• Answer: A stethoscope amplifies faint sounds (e.g., heartbeats) by transferring vibrations from the body to the diaphragm, which resonates to produce a louder sound.

1.5 Wave Motion

- 1. What is wave motion? How does it differ from particle motion in a medium?
 - **Answer**: Wave motion is the transfer of energy through a medium via oscillations without permanent displacement of particles. Particles oscillate locally, while the wave propagates energy across the medium.

2. Differentiate between longitudinal and transverse waves with examples.

• Answer: Longitudinal waves have particles vibrating parallel to the wave's direction (e.g., sound waves). Transverse waves have particles vibrating perpendicular to the wave's direction (e.g., light waves or waves on a string).

1.6 Wave Characteristics

1. Define wavelength and state its unit.

• Answer: Wavelength (λ) is the distance between two consecutive particles in the same phase of vibration (e.g., two crests or compressions), measured in meters (m).

- 2. What is the relationship between the speed, frequency, and wavelength of a wave?
 - Answer: The speed of a wave (v) is the product of its frequency (f) and wavelength (λ): $v = f\lambda$.
- 3. A wave travels 700 m in 2 s. Calculate its speed.
 - Answer: Speed = $\frac{\text{Distance}}{\text{Time}} = \frac{700}{2} = 350 \text{ m/s}.$
- 4. A sound wave has a frequency of 175 Hz and a wavelength of 2 m. Calculate its speed.
 - Answer: Speed = $f\lambda = 175 \times 2 = 350 \text{ m/s}.$

1.7 Reflection of Sound

- 1. Why is the reflected sound louder on a smooth surface compared to a rough surface?
 - Answer: Smooth surfaces reflect sound waves more effectively, preserving more energy, while rough surfaces scatter sound, reducing loudness.
- 2. What is an echo, and what is the minimum distance required to hear it in air (speed of sound = 350 m/s)?
 - Answer: An echo is the distinct reflection of the initial sound after a delay. Minimum distance $=\frac{350\times0.1}{2}=17.5$ m, based on the persistence of hearing (0.1 s).
- 3. If an echo is heard 1 s after a firecracker is burst, how far is the reflecting surface (speed of sound = 350 m/s)?
 - Answer: Distance = $\frac{350 \times 1}{2} = 175 \,\mathrm{m}.$

1.8 Reverberation and Audibility

- 1. What is reverberation, and why are cinema hall walls made rough?
 - Answer: Reverberation is the lingering of sound due to multiple reflections. Rough walls scatter sound, reducing reverberation for clearer audio.
- 2. What are the human audible frequency limits, and why can't humans hear a galton whistle?
 - Answer: Humans hear frequencies between 20 Hz and 20 kHz. A galton whistle (30 kHz) is ultrasonic, above the human hearing range.

1.9 Ultrasonic Waves

- 1. List two uses of ultrasonic waves in the medical field.
 - Answer: Ultrasonography (imaging organs) and crushing kidney stones.
- 2. How does SONAR use ultrasonic waves to measure underwater distances?

- **Answer**: SONAR emits ultrasonic waves, which reflect off underwater objects. The time taken for the echo to return is used to calculate distance using the speed of sound in water.
- 3. If an ultrasonic wave in seawater (speed = 1522 m/s) returns after 0.2 s, calculate the distance to the object.
 - Answer: Distance $=\frac{1522 \times 0.2}{2} = 152.2 \,\mathrm{m}.$

1.10 Application-Based Questions

- 1. A tuning fork of 512 Hz is pressed on a table, causing it to vibrate. What phenomenon is this, and why is the sound louder?
 - Answer: This is forced vibration. The sound is louder because the table vibrates with the tuning fork, amplifying the sound energy.
- 2. A longitudinal wave has a frequency of 35 Hz and travels at 350 m/s. What is the distance between two consecutive compressions?
 - Answer: Wavelength $= \frac{v}{f} = \frac{350}{35} = 10 \text{ m}$. This is the distance between two consecutive compressions.
- 3. Why don't we hear an echo in a small room?
 - Answer: In a small room, the reflecting surface is closer than 17.5 m, so the reflected sound arrives within 0.1 s, merging with the original sound due to persistence of hearing.
- 4. A wave produces 50 crests and 50 troughs in 0.5 s. Calculate its frequency.
 - Answer: Total cycles = 50 (since 50 crests correspond to 50 cycles). Frequency = $\frac{50}{0.5} = 100$ Hz.
- 5. A transverse wave has a wavelength of 2 m and a speed of 20 m/s. What is its frequency?
 - Answer: Frequency $=\frac{v}{\lambda}=\frac{20}{2}=10$ Hz.
- 6. Explain how resonance is used in a guitar.

• Answer: When a guitar string is plucked, it vibrates at its natural frequency, causing the guitar's body to resonate at the same frequency, amplifying the sound.