1. Who received the Nobel Prize in Chemistry in 2020 for developing CRISPR-Cas9?

a) James Watson and Francis Crick
b) Emmanuelle Charpentier and Jennifer A. Doudna
c) Rosalind Franklin and Maurice Wilkins
d) Gregor Mendel and Hugo de Vries
Answer: b) Emmanuelle Charpentier and Jennifer A. Doudna
Explanation: They were awarded for their work on CRISPR-Cas9, a precise gene-editing tool.

2. Where is DNA primarily located in a eukaryotic cell?

- a) Cytoplasm
- b) Nucleus
- c) Mitochondria
- d) Ribosomes
- Answer: b) Nucleus

Explanation: DNA is found in the nucleus, within chromosomes, in eukaryotic cells.

3. What is the basic structural unit of a chromosome?

- a) Nucleotide
- b) Nucleosome
- c) Centromere
- d) Allele

Answer: b) Nucleosome

Explanation: A nucleosome is DNA wound around a histone octamer, forming the basis of chromosome structure.

4. Which scientist provided critical X-ray diffraction data for DNA's structure?

- a) Emmanuelle Charpentier
- b) Rosalind Franklin
- c) Jennifer A. Doudna
- d) Francis Crick
- Answer: b) Rosalind Franklin

Explanation: Her "Photo 51" was pivotal for Watson and Crick's double helix model.

5. Which nitrogenous base pairs with adenine in DNA?

- a) Guanine
- b) Cytosine
- c) Thymine
- d) Uracil

Answer: c) Thymine

Explanation: Adenine pairs with thymine via hydrogen bonds in DNA.

6. What is the sugar component of a DNA nucleotide?

- a) Ribose
- b) Deoxyribose
- c) Glucose
- d) Fructose
- Answer: b) Deoxyribose

Explanation: DNA nucleotides contain deoxyribose sugar.

7. How many chromosomes are present in a human somatic cell?

- a) 23
- b) 46
- c) 44
- d) 48
- Answer: b) 46

Explanation: Humans have 46 chromosomes (23 pairs) in somatic cells.

8. Which gene on the Y chromosome determines male sex?

- a) XIST
- b) SRY
- c) TDF
- d) HBB
- Answer: b) SRY

Explanation: The SRY gene triggers testis development, leading to male characteristics.

9. What is the genetic constitution of an individual with Turner syndrome?

- a) 44 + XXY b) 44 + X0
- c) 44 + XXX
- d) 44 + XYY

Answer: b) 44 + X0

Explanation: Turner syndrome involves a single X chromosome, resulting in 45 total chromosomes.

10. What is a gene?

- a) A protein molecule
- b) A segment of DNA coding for a protein
- c) A type of RNA
- d) A chromosome pair

Answer: b) A segment of DNA coding for a protein

Explanation: Genes are DNA sequences that code for proteins, controlling traits.

11. Where does transcription occur in a eukaryotic cell?

- a) Cytoplasm
- b) Ribosomes
- c) Nucleus
- d) Mitochondria
- Answer: c) Nucleus

Explanation: Transcription, where mRNA is synthesized from DNA, occurs in the nucleus.

12. Which RNA molecule delivers amino acids during translation?

- a) mRNA
- b) tRNA
- c) rRNA
- d) snRNA

Answer: b) tRNA

Explanation: tRNA transfers specific amino acids to ribosomes based on mRNA codons.

13. What is heredity?

a) Variation in traits

b) Transmission of traits from parents to offspring

c) Mutation in DNA

d) Protein synthesis

Answer: b) Transmission of traits from parents to offspring

Explanation: Heredity involves passing genetic traits to offspring.

14. Who is considered the father of genetics?

- a) Charles Darwin
- b) Gregor Mendel
- c) James Watson
- d) Hugo de Vries
- Answer: b) Gregor Mendel

Explanation: Mendel's pea plant experiments established the principles of inheritance.

15. What is the phenotypic ratio in the F2 generation of a monohybrid cross?

- a) 1:2:1
- b) 3:1
- c) 9:3:3:1
- d) 1:1
- Answer: b) 3:1

Explanation: In a monohybrid cross, the F2 generation shows a 3:1 dominant-to-recessive ratio.

16. Why are no intermediate phenotypes observed in Mendel's monohybrid cross?

- a) Incomplete dominance
- b) Co-dominance
- c) Complete dominance
- d) Polygenic inheritance

Answer: c) Complete dominance

Explanation: The dominant allele fully masks the recessive allele, preventing intermediate traits.

17. What is the phenotypic ratio in the F2 generation of a dihybrid cross?

- a) 3:1
- b) 1:2:1
- c) 9:3:3:1
- d) 1:1:1:1
- Answer: c) 9:3:3:1

Explanation: This ratio results from independent assortment of two traits.

18. Which inheritance pattern results in an intermediate phenotype?

- a) Complete dominance
- b) Incomplete dominance
- c) Co-dominance
- d) Multiple allelism
- Answer: b) Incomplete dominance

Explanation: Neither allele is fully dominant, producing a blended phenotype (e.g., pink flowers).

19. What is an example of co-dominance?

a) Pink flowers in four o'clock plants

b) Roan coat in cattle

c) Skin color in humans

d) Height in pea plants

Answer: b) Roan coat in cattle

Explanation: Both red and white alleles are expressed, resulting in a mix of red and white hairs.

20. Which alleles control the ABO blood group system?

- a) A, B, O
- b) IA, IB, i
- c) T, t
- d) R, r

Answer: b) IA, IB, i

Explanation: These three alleles determine the four blood types (A, B, AB, O).

21. What process during meiosis creates new allele combinations?

- a) Mutation
- b) Crossing over
- c) Transcription
- d) Translation

Answer: b) Crossing over

Explanation: Crossing over exchanges segments between homologous chromosomes, increasing variation.

22. What is a mutation?

a) Protein synthesis

b) Sudden change in genetic material

c) Independent assortment

d) Gene editing

Answer: b) Sudden change in genetic material

Explanation: Mutations alter DNA, potentially introducing new traits or disorders.

23. Which pigment primarily determines skin color?

- a) Hemoglobin
- b) Melanin
- c) Carotene
- d) Chlorophyll
- Answer: b) Melanin

Explanation: Melanin, controlled by multiple genes, determines skin color variation.

24. Application: If a tall pea plant (Tt) is crossed with a dwarf plant (tt), what is the probability of tall offspring?

- a) 25%
- b) 50%

c) 75% d) 100% Answer: b) 50% Explanation: The cross (Tt × tt) produces 50% Tt (tall) and 50% tt (dwarf) offspring.

- 25. Application: In a dihybrid cross (TtRr × TtRr), what is the probability of offspring with both recessive traits?
 - a) 1/16 b) 3/16 c) 9/16
 - d) 6/16

Answer: a) 1/16

Explanation: The probability of ttrr (dwarf, wrinkled) is 1/4 (tt) $\times 1/4$ (rr) = 1/16.

- 26. Application: A couple has blood types A (IAi) and B (IBi). What is the probability of their child having type O blood?
 - a) 0%
 - b) 25%
 - c) 50%
 - d) 75%
 - Answer: b) 25%

Explanation: The cross (IAi × IBi) yields 25% ii (type O) offspring.

27. Application: If a mutation occurs in a skin color gene, what might be the effect?

a) No change in skin color

- b) Altered melanin production
- c) Change in blood type
- d) Modified height

Answer: b) Altered melanin production

Explanation: Skin color is polygenic, and a mutation could affect melanin, altering skin tone.

28. Application: In Klinefelter syndrome (44 + XXY), what is the primary cause of symptoms?

- a) Missing X chromosome
- b) Extra X chromosome
- c) Extra Y chromosome
- d) Missing Y chromosome
- Answer: b) Extra X chromosome

Explanation: The extra X chromosome causes male individuals to develop some female traits.

29. Application: Why might crossing over be important in plant breeding?

- a) It prevents variation
- b) It creates new trait combinations
- c) It stops mutations
- d) It reduces chromosome number
- Answer: b) It creates new trait combinations

Explanation: Crossing over generates diversity, useful for breeding plants with desired traits.

30. Application: How can knowledge of the ABO blood group system help in medical practice?

- a) Predicting height
- b) Ensuring safe blood transfusions
- c) Determining eye color
- d) Preventing mutations

ristrict of the second se