DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI- 6 S.S.L.C PUBLIC EXAM – MARCH/APRIL - 2025

SCIENCE ANSWER KEY

MAXIMUM MARKS: 75

Part I

Choose the Most Appropriate Answer.

12 x 1 = 12

Q.No.	Option	Answer	Mark
1.	(c)	98 x 10 ⁴ dyne	1
2.	(d)	bifocal lens	1
3.	(b)	10 V	1
4.	(b)	Irene Curie	1
5.	(b)	Hg	1
6.	(b)	increases	1
7.	(c)	1 x 10 ⁻¹¹ M	1
8.	(b)	Combustion of ethanol	1
9.	(d)	endodermis	1
10.	(b)	Metacentric	1
11.	(a)	December 1	1
12.	(d)	Scratch	1

Part - II

Answer any SEVEN questions. Question **No.22** is compulsory

 $7 \times 2 = 14$

Q.No.	Answer	Mark
13.	One calorie is defined as the amount of heat energy required to rise the temperature of 1 gram of water through 10 C.	2
14.	As sound travels through a medium the particles of the medium vibrate along the direction of propagation of the wave.	2
15.	Moist AirWaterOxygen	2
	(Any two)	

16.	Match the Following		Addition of the second of the				
1	1 Functional group -OF	4 T-	Alcohol	3			
	2 Heterocyclic compour		Furan				
	3 Unsaturated compour		Ethene				
1	4 Soap	-	Potassium stearate		2		
	5 Carbocyclic compoun	ds -	Benzene				
			(Any I	Four)	_		
17.	They regulate the flow of	blood.			1		
	They allow blood in a s	single dire	ection, prevent back flo	ow of	1		
	blood.						
18.	 Sudden shoot elongation bolting. 	n followe	d by flowering is knov	vn as	1		
	Bolting can be induced a Gibberellins.	rtificially o	on plants by the treatme	ent of	1		
	(or)					
	Sudden shoot elongation for rosette plants with gibberelling			ent of	2		
19.	A – Exine (or) Outer layer						
	B -Intine (or) Inner layer				4x ½=2		
	C - Generative cell				/2 2		
	D - Vegetative nucleus						
20.	The kiwi did not use its wings for a long time.						
	 According to use and degenerated. 	disuse th	neory, the wing of ki	wi is	1		
21.	 Floods. 						
	Drought.						
	Soil erosion.			1	2		
	Loss of wild life.						
	Extinction of species.						
	Imbalance of biogeochemical cycles.						
	Alteration of climatic conditions.						
	 Desertification . 						
22.	Molocular mass of Math. (a)		(Any	Two)	1		
.2.	Molecular mass of Methane(Ch	14) = 124	-4 = 16g		1		
	Mass % of carbon (C)	12	x 100 = 75%		1/2		
	(0)	16	X 100 - 7570		. –		
	Mass % of hydrogen (H)	4 =	x 100 = 25%		1/2		

Answer any SEVEN questions. Question **No.32** is compulsory

7x4 = 28

			/ x4=2	-0	
	ļ.,		swer	Mark	
Q.No 23.	Acco PV= Acco V/T = Acco V/n = After n = µ	eal gas obeys Boyle's law, rding Boyle's law constant rding Charles's law constant rding Avogadro's law constant combining three equations	Charles's law and Avogadro's ———————————————————————————————————	Mark 2 (3 laws)	
	PV/ $\mu N_A T$ = Constant Constant = k_B , Boltzmann constant (1.38 x 10 ⁻²³ JK ⁻¹) PV/ $\mu N_A T$ = k_B PV = $\mu N_A k_B T$ Here $\mu N_A K_B$ = R, which is termed as universal gas constant whose value is 8.31 JMol ⁻¹ k ⁻¹				
	Ideal	PV = RT gas equation is also called	as equation of state.	1 (result)	
24.		Myopia	Hypermetropia		
	i) ii)	Myopia is short sightedness. It is due to the	Hypermetropia is long sightedness. It is due to the shortening of		
	iii)	lengthening of eye ball. Nearby objects can be seen clearly .	eye ball. Distant objects can be seen clearly.		
	iv)	Distant objects cannot be seen clearly.	Nearby objects cannot be seen clearly .		
	(v)	Focal length of eye lens is reduced.	Focal length of eye lens is increased.	4	
	vi)	Distance between eyelens and retina increases.	Distance between eyelens and retina decreases.		
	vii)	Image of distant objects are formed before retina.	Image of nearby objects are formed behind retina.		
	viii)	To correct myopia, Concave lens is used.	To correct Hypermetropia Convex lens is used.		
ı			(Any Four	.	

Properties	Alpha rays (α)	Beta rays (β)	Gamma rays (γ)
What are they?	Helium nucleus (₂ He ⁴) consisting of two protons and two neutrons	They are electrons (-1e°), basic elementary particle in all atoms.	They are electromagn etic waves consisting of photons.
Charge	Positively charged particles. Charge of each alpha particle = +2e	Negatively charged particles. Charge of each beta particle = -e	Neutral particles. Charge of each gamma particles = zero
lonising power	100 times greater than beta rays and 10,000 times greater than γ rays	Comparatively low	Very less ionization power
Penetrating power	Low penetrating power (even stopped by a thick paper)	Penetrating power is greater than that of (a) rays. They can penetrate through a thin metal foil.	They have a very high penetrating power greater than that of β rays. They can penetrate through thick metal blocks.
Effect of electric and magnetic field	Deflected by both the fields. (in accordance with Fleming's left hand rule)	Deflected by both the fields; but the direction of deflection is opposite to that for alpha rays. (in accordance with Fleming's left hand rule)	They are not deflected by both the fields.
Speed	Their speed ranges from 1/10 to 1/20 times the speed of light.	Their speed can go up to 9/10 times the speed of light.	They travel with the speed of light.

Δ

26.		
20.	Applications of Avogadro's Law	
	It explains Gay-Lussac's law.	
	It helps in the determination of atomicity of gases.	
	Molecular formula of gases can be derived using Avogadro's	4
	law.	
	It determines the relation between molecular mass and	
	vapour density.	
	It helps to determine gram molar volume of all gases.	
27 (i)	Alloy (Any four)	
_, (,,		_
	An alloy is a homogeneous mixture of two or more metals or of	2
	one or more metals with certain non-metallic elements.	
(ii)	Paggara for all and	
(11)	Reasons for alloying	
	To modify appearance and colour.	
	To modify chemical activity.	2
	To lower the melting point.	
	 To increase hardness and tensile strength. 	
	To increase resistance to electricity.	
	(Any two Reasons)	
28.	A soap molecule contains two chemically distinct ends	
	One polar end with short head with carboxylate group	2
	(-COONa) (water loving)	_
	One non polar end with long tail made of the hydro carbon	
	chain (water hating)	
	Citalii (Water Hatling)	
	Cleansing action	
	The hydrophobic part traps the dirt.	
	The hydrophilic part makes the entire molecules soluble in	
	water.	
		2
	When a soap or detergent is dissolved in water, the molecules in transfer as electors called (minutes).	_
	molecules join together as clusters called 'micelles'.	
	Their long hydrocarbon chain attach themselves to the oil	
	and dirt.	
	The charged Carboxylate end of the Soap makes micelles	
0.5	soluble in water. Thus the dirt is washed away with soap.	
29.	Locomotion takes place by two methods.	
	Looping or crawling movement	2
	2) Swimming movement	
	1) Looping or crawling movement	
	 It is brought about by the contraction and relaxation of 	
	muscles	2
	 The two suckers serve for attachment during movement 	
	on a substratum.	
	2) Swimming Movement.	
	 Leaches swim actively and perform undulating movements 	
	in water	
	in water	

2

A neuron consists of three basic parts- cyton, dendrites, axon Cyton

- Cyton is also called cell body or Perikaryon. It has a central nucleus with abundant cytoplasm called neuroplasm.
- The cytoplasm has large granular body called Nissl's granules and the other cell organelles like mitochondria ribosomes, lysosomes and endoplasmic reticulum.
- Neurons do not have the ability to divide.
- Neurofibrils help in transmission of nerve implulses.

Dendrites

- These are the numerous branched cytoplasmic processes.
- They project from the surface of the cell body.
- They conduct nerve impulses towards the cyton.
- The branched projections increase the surface area for receiving the signals from other nerve cells.

<u>Axon</u>

- The axon is a single elongated slender projection.
- The end of axon has synaptic knob.
- Axolemma: The plasma membrane of axon
- Axoplasm: The cytoplasm of axon
- It carries impulses away from the cyton.
- The Axons may be covered by Protective sheath called Myelin Sheath.
- It is further covered by a layer of Schwann cells called Neurilemma.
- Myelin sheath breaks at intervals by depressions called Nodes of Ranvier.
- The region between the nodes is called as Internode.
- Myelin sheath acts as insulator and ensures rapid transmission of nerve impulses.

2

31 (i)	Cons	eque	ences of Soil Erosion						
0. (.,	•	Soil	Prosion causes a significant land of human authority	2					
	•	Dec	erosion causes a significant loss of humus, nutrients rease the fertility of soil	2					
		and torunty of son							
(ii)	Preve	Prevention of Soil Erosion							
, ,	•	Retain vegetation cover, so that soil is not exposed							
	•	Catt	de grazing should be controlled						
	•	Crop	rotation and soil management improve soil organic						
		mati	ter	200					
	•	Run	off water should be stored in the catchment	2					
	•	Refo	prestation, terracing and contour ploughing						
	•	vvin	d speed can be controlled by planting trees in form of						
		a sn	elter belt.						
32.			(Any two preventive measures)						
32.			(
	n ⁱ	=	\biggred \text{V-V_s} \end{array} n	1					
			V-V _s						
			V-(1/10)v						
		=	n	_					
			(V-(1/10)V)	2					
			(10)						
		=	n						
			(9)						
			10						
		=	x 90						
			9						
		n¹	= 100 Hz	1					
		••	- 100112	'					

Diaw	diagrams wherever necessary $3x/=2$	2 1
Q.No.	Answer	Mark
33 (a) (i)	Law of conservation of Linear Momentum There is no change is the linear momentum of a system of bodies as long as no net external force acts on them	2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	 Proof Let two bodies A and B having masses m₁ and m₂ move with initial velocity u₁ and u₂ in a straight line. Let the velocity of the first body be higher than that of the second body. ie. u₁>u₂ During an interval of time t second they tend to have a collision. After the impact both of the bodies move along the same straight line with a velocity v₁ and v₂ respectively 	2
	Force on body B due to A (v_2-u_2) $F_A = m_2$	
	F _B = m ₁	
	$F_{B} = -F_{A}$ m_{1}	
(ii)	Principle of Moments: When a number of like or unlike parallel forces act on a rigid body and the body is in equilibrium, then the algebraic sum of the moments in the clockwise direction is equal to the algebraic sum of the moments in the anticlockwise direction. (or)	2
	Moment in clockwise = Moment in anticlockwise direction	
	$F_1xd_1 = F_2xd_2$	

		(OR)					
33 (b)	(i)	Electric current is defined as the r conductor.		2			
		(or)					
		I = Q/t					
	(ii)	The S.I unit of electric current is a	mpere (A)	1			
	` '	When a charge of one could		2			
		section of a conductor in one seco	ond	2			
		1 coulomb					
		1 ampere =					
	/:::\	1 second					
	(iii)	Ammeter	r.	1			
04 (0)	(i)	It is connected in a circuit by serie	s connection.	1			
34 (a)	(i)	Hygroscopic substances	Deliquescence substance				
		They absorb moisture and do not dissolve	They absorb moisture and dissolve	3			
		2) They do not change its	They change their				
		physical state on	physical state on exposure to air				
		exposure to air They may be amorphous	They are crystalline solids				
		solids or liquids					
		4) Any one of Hygroscopic	Any one of Deliquescence substances				
		substances Ex:Silica gel	Ex: NaOH, KOH				
		Ex.ollica gol	(Any the	ree)			
		to saile	regions because more amo	ount			
	(ii)	A II I I I I I I I I I I I I I I I I I	the water of cold regions.	11110			
		shows that the solubility of oxy	ygen in water is more at	low			
		temperatures.					
		Volume percentage is defined a	s the percentage by volume	e of			
	(iii)	solute (in ml) present in the given	Volume of the section				
		(0	1)				
		Volume Volume of the solute x100					
		Percent = Volume of age	the Solution	2			
		(0	r)	2			
			f the solute x100				
		Percent = Volume of	the Solute+				
		age Volume of	f the solvent				

and the second s

			(OR)			
34(b) (i)				1	rsible Reaction	
	1) I	Reversible Reacti t is relatively slow	ion	It is fast	ISIDIE REACTION	
	-	t attains equilibrium	-		m is not attained	
		,				4
	, ,	can be reversed und	der	It cannot	be reversed	
		uitable conditions Both forward and back	ward	It is unidi	rectional. it	
		eactions take place			only in forward	
	s	imultaneously		direction.		
	- / .	he reactants cannot			tants can be ly converted into	
	1	onverted completely roducts	into	products.	- 11	
	P	roducto		P	(Any four)	
(ii)	B – Ca C – Ca) CaO) CO₂		s, give one mark)	3
35(a) (i)	SI.No	Tissues	Mono	cot	Dicot	
	1	Number of xylem	Polya		Tetrarch	
		,			Present	
	2	Cambium	Abser	nt	(During secondary	
					growth only)	
	3	Secondary Growth	Abser		Present	4
	4	Pith	Prese		Absent	
	5	Conjunctive tissue	Made Sclere	up or enchyma	Made up of Parenchyma	
	6	Example	Maize		Bean	
					(Any four)	
(ii)		BIC RESPIRATION			RESPIRATION	
	of oxyg	s place with the help	It take	s place wi	thout oxygen	
	Glucos	se is broken down			erted into ethanol	
		O ₂ ,H ₂ O and energy place in Plants and		ic acid	Postovia and and	3
	anima		and Takes Place in Bacteria and y		bacteria and yeast	
		rs in three steps		simpler pr		
		O_6 +6 O_2 \longrightarrow 6 H_2 O+ATP	C ₆ H ₁₂ +2C ₂ H	O ₆ → 2C H₅OH+Ene	O ₂ rgy (ATP)	
					(Any Three)	

	(OR)	
35(b) (i)	TELOMERE SECONDATY CONSTRUCTION PELLICLE MATTIX SATELLT CHROMONEMATA SECONDATY CONSTRUCTION CENTROMERE PRIMARY CONSTRUCTION CENTROMERE	2
	The Chromosomes are thin, long and thread like structures. t consists of two identical strands called sister chromatids held together by the centromere.	
	 Each chromatid is made up of spirally coiled chromonema The Chromonema has number of bead like structures called Chromomeres. The chromosomes are made up of DNA, RNA chromosomal proteins and certain metallic icons 	
	Primary Constriction	_
	 The two arms of chromosome meet at a point called primary constriction (or) centromere. The Spindle fibres attach to the chromosomes during cell division. 	3
	 Secondary constriction Some chromosomes possess secondary constriction These occur at any point of the chromosome and are known as the nuclear zone or nucleolar organizer 	
	Telomere	
	 It is the end of the chromosome It prevents from joining the adjacent chromosome It maintains and provides stability to the chromosomes. 	
	It is an elongated knob – like appendage at one end of the choromosome. The chromosomes with satellites are called as the satchromosomes.	
35.(b) (ii)	Somatic Gene Therapy Somatic Gene Therapy is the replacement of defective gene in somatic cells. Correction of genetic defects in somatic cell may be beneficial to the patient but the corrected gene may not be carried to the next generation.	2
	Germ line Gene Therapy Germ line gene theraphy is the replacement of defective gene in germ cell (egg and sperm)	