

Reg. No. :

Name :

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, FEBRUARY 2025 Part – III PHYSICS Maximum : 60 Scores

Time : 2 Hours Cool-off Time : 15 Minutes

General Instructions to Candidates :

- There is a 'Cool off time' of 15 minutes in addition to the writing time.
- Use 'cool off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുന്നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൃൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൃത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദുങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

FY 524 Physics 1/15

			(and the second se
Answer any 5 q	uestions from 1 to 7.	Each carries 1 score.	Score (5×1=5)
1. Number of si	ignificant figures in 0.0	0024500 is	
a) 3	b) 5	c) 8	d) 7
2. What is the re	lationship between the	stopping distance and the initi	al velocity of a vehicle ?
3. Orbital veloci satellite of ma	ity of a satellite of mass ass 2m in the same orb	s m is V _o . What will be the orl bit ?	vital velocity of another
4. Substance wh	ich can be stretched to	cause large strains are calle	d
5. Equation of co	ontinuity deals with th	e law of conservation of	
6. In which mode	e of heat transfer no m	edium is required ?	
a) Conduction	ř.		
b) Radiation			
c) Convection			
7. The average ki	netic energy of a mole	ecule of a gas is directly prop	ortional to
Answer any 5 que	estions from 8 to 14.	Each carries 2 scores.	(5×2=10)
8. A player throws	s a ball upward with a	n initial speed of 29.4 m/s.	
a) What is the c	lirection of acceleration	on during the upward motior	n of the ball ? (1)
b) What are the	velocity and accelera	tion of the ball at the highes	t point of its
motion ?			(1)

FY 524 Physics 2/15

Score

(1)

9. a) If \vec{A} and \vec{B} are two vectors of different magnitude, can $\vec{A} + \vec{B} = \vec{A} - \vec{B}$?	(1)
b) Write two properties of null vector.	(1)
10. a) Work done in the motion of a body over a closed loop is zero for conservative forces in nature. Say true or false. Give reason for your answer.	(1)
 b) Classify the following into conservative and non-conservative forces. Electrostatic force, frictional force, viscous force, magnetic force. 	(1)
11. a) Define moment of inertia.	(1)
b) What are the factors on which moment of inertia of a body depends?	(1)
12. a) State Kepler's second law (law of area) of planetary motion.	(1)

- 12. a) State Kepler's second law (law of area) of planetary motion.
 - b) The figure shows different positions P, Q, R and S of a planet around the sun. The planet has different velocities at these positions. Identify the position at which the kinetic energy of the planet is maximum.

i) P	ii) Q

iv) S iii) R

FY 524 Physics 4/15

		Score
13. a) State first law of thermodynam	nics.	(1)
 b) The increase in internal energy Which process does the system 	v of a system is equal to the work done on the s m undergo ?	system.
i) Isothermal	ii) Isobaric	
iii) Adiabatic	iv) Isochoric	(1)
14. a) What would be the effect on r.a gas is increased ?	m.s. velocity of a gas molecule, if the temper.	rature of (1)
b) Calculate the root mean squar	e velocity of oxygen molecule at 100K.	
(Given R = 8.31J mol ⁻¹ K ⁻¹ , n		(1)
Answer any 6 questions from 15 to	21. Each carries 3 scores.	(6×3=18)
15. a) Draw the velocity – time grap	h of a body in uniform accelerated motion.	(1)
b) From graph, derive the relation	$x = v_0 t + \frac{1}{2} a t^2$.	(2)

- 16. a) State Newton's second law of motion.
 - b) The force F acting on a particle of mass m is indicated by force time graph shown below. Find the change in momentum of the particle over the time interval from zero to 10 s.
 (2)

(1)

FY 524 Physics 6/15

Score

17. a) State the law of	f conservation of angular momentum.	(1)
b) Angular momen	ntum of a rotating body is $\vec{L} = \vec{r} \times \vec{p}$. Using this relation	arrive at
the equation $\frac{dL}{dt}$	$\vec{\tau} = \vec{\tau} \ (\tau = \text{Torque}).$	(2)
18. a) State Hooke's I	aw in elasticity.	(1)
b) Say true or fals	e	
i) The Young's	modulus of rubber is greater than that of steel.	
ii) The stretchin	ng of a coil is determined by its shear modulus.	(2)

- 19. a) It is easy and less painful to use thin needle than a thick needle for taking an injection. For the same applied force, which needle exerts more pressure ? Why ? (1)
 - b) Two vessels of different shape are filled with water to the same height 'h' as shown in figure, is the pressure on the base of each vessel the same ? Explain.

(2)

(2)

- 20. a) Explain anomalous expansion of water.
 - b) Latent heat of vaporization of water is 22.6×10^5 J/kg. Calculate the energy needed to change 0.5g of water into steam at 100°C. (1)
- 21. Obtain an expression for work done in an isothermal process.

FY 524 Physics 8/15

Answer any 3 questions from 22 to 2	25. Each carries 4 scores.	Score (3×4=12)
22. a) State the principle of homogene	eity of dimension.	(1)
b) Which of the following has unit	but no dimension ?	
i) Strain	ii) Relative velocity	
iii) Angle	iv) Relative density	(1)
c) Kinetic energy of a body depend principle of dimension derive an	ds on its mass 'M' and velocity 'v'. Usir n expression for kinetic energy.	ng (2)
23. a) State and prove work energy theb) State whether the potential energy	eorem. gy in the following cases increases or de	(3)
i) A spring is stretched	gy in the following cases increases of de	creases.
ii) A spring is compressed		(1)
24. a) Give one example of S. H. M. orb) Derive equations for the kinetic simple harmonic motion.	scillation. energy and potential energy of a body e	10 77 10 10 10 10 10 10 10 10 10 10 10 10 10
	6	(3)
25. a) On what factor does the speed of		(1)
b) Show that in a closed pipe, the first ratio 1:3:5.	requencies of first three harmonics are i	n the (3)

FY 524 Physics 10/15

.

	Score
Answer any 3 questions from 26 to 29. Each carries 5 scores.	3×5=15)
26. A boy throws a cricket ball with velocity u at an angle θ with the horizontal.	
 a) Draw the velocity time graph for the horizontal and vertical components of velocity. 	(2)
b) Taking the vertical component of velocity, arrive at an equation to find the tim	110000
flight of the ball.	(2)
c) What is the kinetic energy of the ball at the highest point of projection ?	(1)
27. Vehicle of mass m is moving with a velocity v along a banked road with radius R	
a) Draw vector diagram showing the various forces acting on the vehicle.	(2)
b) Derive an expression for the maximum permissible speed at the banked road wit friction.	
c) A car speeding at 80 km/h on a level road takes a sharp turn without reducing	(2) the
speed. If the coefficient of static friction between the tyre and road is 0.20.	
Will the car skid while taking the turn ? (Radius of the circular path = $4m$)	(1)
28. The value of g is same for all objects at a given place.	
a) The acceleration due to gravity is maximum at	
(poles, equator)	(1)
b) Derive an expression for the variation of 'g' with height 'h' above the surface the earth, where h< <r.< p=""></r.<>	
	(3)

FY 524 Physics 12/15

Score

c) The variation of acceleration due to gravity (g) with distance (r) from the centre of the earth is correctly represented by (Given R = radius of earth)
 (1)

FY 524 Physics 14/15