CCE RR/PR/NSR/NSPR REDUCED SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಜೂನ್ 2024 ರ ಪರೀಕ್ಷೆ - 2

JUNE 2024 EXAMINATION – 2

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy)

CODE NO. : 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಶಾಲಾ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಖಾಸಗಿ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಎನ್.ಎಸ್.ಆರ್. / ಎನ್.ಎಸ್.ಪಿ.ಆರ್.)

(Regular Repeater / Private Repeater / NSR / NSPR)

(ಭೌತಶಾಸ್ತ್ರ / Physics)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

ದಿನಾಂಕ : 20. 06. 2024]

Date : 20. 06. 2024]

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

PART – A (Physics)

Qn.	Value Points				
Nos.		Total			
I.	Multiple choice questions : $4 \times 1 = 4$				
1.	To get virtual and erect image by a convex lens, an object is				
	to be placed (A) beyond $2F_1$				
	(B) between F_1 and $2F_1$				
	(C) at focus F_1				
	(D) between focus F_1 and optical centre O				
	Ans. :				
	(D) between focus F_1 and optical centre O	1			
	CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) PHY	ırn over			

Qn. Ios.	Value Points	Tota
2.	Which of the following lenses would you prefer to use while	
	reading small letters found in a dictionary ?	
	(A) A convex lens of focal length 60 cm	
	(B) A concave lens of focal length 60 cm	
	(C) A convex lens of focal length 6 cm	
	(D) A concave lens of focal length 6 cm	
	Ans. :	
	(C) A convex lens of focal length 6 cm	1
3.	The magnetic field inside a long straight solenoid carrying current	
	(A) is the same at all points	
	(B) is zero	
	(C) decreases as we move towards its end	
	(D) increases as we move towards its end	
	Ans. :	
	(A) is the same at all points	1
4.	A light ray enters from a rarer medium to a denser medium.	
	Then the speed of that light ray and its mode of refraction	
	respectively are	
	(A) increases and bends away from the normal	
	(B) decreases and bends towards the normal	
	(C) increases and bends towards the normal	
	(D) decreases and bends away from the normal	
	Ans. :	
	(B) decreases and bends towards the normal	1

Qn. Nos.	Value Points	Total
v .	Answer the following questions : $3 \times 3 = 9$	
9.	A concave lens has focal length of 25 cm. At what distance	
	should the object from the lens be placed so that it forms an	
	image at 20 cm from the lens ? Find the magnification of the	
	image produced by the lens.	
	Ans. :	
	Here, $v = -20$ cm, $f = -25$ cm, $u = ?$ $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	
	$\therefore -\frac{1}{u} = \frac{1}{f} - \frac{1}{v}$	
	$\therefore \frac{1}{u} = -\frac{1}{f} + \frac{1}{v}$	
	$\therefore \frac{1}{u} = \frac{1}{v} - \frac{1}{f}$	
	$\therefore \frac{1}{u} = \frac{1}{-20} - \frac{1}{-25}$	
	$\therefore \frac{1}{u} = -\frac{1}{20} + \frac{1}{25}$	
	$\therefore \frac{1}{u} = \frac{-5+4}{100}$	
	$\therefore \frac{1}{u} = -\frac{1}{100}$	
	$\therefore u = -100 \text{ cm} \qquad \qquad 2$	
	∴ Object distance = 100 cm	
	Magnification, $m = \frac{v}{u}$	
	$=\frac{-20}{-100}$	
	$= \frac{1}{5}$	
	$\therefore m = +0.2$	3

CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) PHY [Turn over

5

83-E (PHY)

Qn. Nos.	Value Points	Tota
b)	★ Bio-gas contains up to 75% methane.	
	\star It burns without smoke and leaves no residue	
	\star Its heating capacity is very high	
	\star It is also used for lighting	
	\star The slurry left behind is used as excellent manure	
	\star The large scale utilisation of bio-waste and sewage	
	material provides a safe and efficient method of	
	waste-disposal.	
	(Any <i>four</i> points) $4 \times \frac{1}{2} = 2$	3
	OR	
a)	Properties of a good source of energy :	
	* It should do a large amount of work per unit volume or mass. $\frac{1}{2}$	
	* It should be easily accessible. $\frac{1}{2}$	
	* It should be easy to store and transport $\frac{1}{2}$	
	* It should be economical. $\frac{1}{2}$	
b)	Principal advantages of solar cells :	
	\star They have no moving parts.	
	\star They require little maintenance.	
	\star Work quite satisfactorily without the use of any	
	focussing device.	
	\star They can be set up in remote and inaccessible	
	hamlets or in areas in which laying a power	
	transmission line may be expensive and not	
	commercially viable.	
	(Any <i>two</i> points) $\frac{1}{2} + \frac{1}{2} = 1$	3

CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) PHY [Turn over

7

Qn. Nos.		Value Points	Total				
V.	Ans	wer the following questions : $1 \times 4 = 4$					
12.	a)	Explain an experiment of drawing magnetic field lines around a bar magnet with the help of a compass needle.					
	b)	Mention two properties of magnetic field lines.					
		OR					
	a)	Explain an experiment to show that a current carrying conductor experiences the force in a magnetic field.					
	b)	How is a simple electric motor converted into a commercial motor ?					
	Ans.	.:					
	a)	Drawing magnetic field lines around a bar magnet using					
		a compass needle :					
		★ Place a bar magnet on a white paper and mark the boundary of the magnet $\frac{1}{2}$					
		\star Place the compass needle near the north pole of					
		the magnet. The south pole of the compass needle					
		directs towards the north pole of the magnet. Mark it with a point. $\frac{1}{2}$					
		\star Move the needle to a new position such that its					
		south pole occupies the position previously occupied by its north pole. Mark it with a point. $\frac{1}{2}$					
		* In this way proceed step by step till you reach the south pole of the magnet. $\frac{1}{2}$					
		* Join the points marked on the paper by a small curve. $\frac{1}{2}$					
		* This curve represents a field line. $\frac{1}{2}$					
		CCF II BD/DD/NSD/NSDD(D)/000/2028 (MA) DUV					

Qn. Nos.		Value Points	То
b)	Pro	perties of magnetic field lines :	
	*	Field lines emerge from north pole of a magnet	
		and merge at south pole.	
	*	Inside the magnet the direction of the field lines is	
		from its south pole to north pole.	
	*	Magnetic field lines are closed curves.	
	*	Magnetic field is stronger where the field lines are crowded.	
	*	No two field-lines are found to cross each other.	
		(Any <i>two</i>) $\frac{1}{2} + \frac{1}{2} = 1$	2
		OR	
a)	*	Take a small aluminium rod and suspend it horizontally using connecting wires. $\frac{1}{2}$	
	*	Place a strong horse-shoe magnet in such a way	
		that rod lies between the two poles with the	
		magnetic field directed upwards. $\frac{1}{2}$	
	*	Connect the aluminium rod in series with a	
		battery, a key and a rheostat. $\frac{1}{2}$	
	*	Now pass the current through the aluminium rod	
		in one particular direction. $\frac{1}{2}$	
	*	The rod displaces towards one side. $\frac{1}{2}$	
	*	Reverse the direction of current flowing through	
		the rod. The rod displaces towards the opposite side. $\frac{1}{2}$	
	Her	nce a current carrying conductor experiences a force	
	per	pendicular to its length in a magnetic field.	

CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) PHY [Turn over

Qn. Nos.		Value Points	Total					
	b)	 ★ By replacing permanent magnet with an electromagnet. 						
		 ★ By increasing the number of turns of the conducting wire in the current-carrying coil. 						
		★ By using a soft iron core on which the coil is						
		wounded. (Any <i>two</i>) $\frac{1}{2} + \frac{1}{2} = 1$	4					
VI.	Ans	wer the following question : $1 \times 5 = 5$						
13.	a)	a) What is resistance of a conductor ? On what factors						
		does the resistance of a conductor depend ?						
	b)	It is advantageous to connect electrical devices in						
		parallel instead of connecting them in series. Why ?						
		Explain.						
	Ans	:						
	a)	\star Resistance of a conductor is a property that						
		resists the flow of electron charges in the						
		conductor. 1						
		\star The resistance of a conductor depends on :						
		i) its length $\frac{1}{2}$						
		ii) its area of cross-section $\frac{1}{2}$						
		iii) the nature of its material $\frac{1}{2}$						
		iv) temperature. $\frac{1}{2}$						

Qn. Nos.		Value Points		
	b)	*	Parallel circuit divides the current through the electrical devices connected.	
		*	This is helpful particularly when each device has different resistance and requires different current	
		*	to operate properly. But in a series circuit when one component fails the current is broken and none of the components	
			works. (Any <i>two</i>) 1 + 1	5

CCE RR/PR/NSR/NSPR REDUCED SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಜೂನ್ 2024 ರ ಪರೀಕ್ಷೆ - 2

JUNE 2024 EXAMINATION – 2

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Chem.) CODE NO. : 83-E (Chem.)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಶಾಲಾ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಖಾಸಗಿ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಎನ್.ಎಸ್.ಆರ್. / ಎನ್.ಎಸ್.ಪಿ.ಆರ್.)

(Regular Repeater / Private Repeater / NSR / NSPR)

(ರಸಾಯನಶಾಸ್ತ್ರ / Chemistry)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

ದಿನಾಂಕ : 20. 06. 2024]

Date : 20. 06. 2024]

PART – B (Chemistry)

Qn. Nos.		Value Points						
VII.	Mu	ltiple choice qu	estions :		2 × 1 = 2			
14.	The	molecular form	ula of propan	al is				
	(A)	C_2H_5COOH	(B)	С ₂ Н ₅ СНО				
	(C)	с ₃ н ₅ сно	(D)	с ₃ н ₅ соон				
	Ans							
	(B)	C ₂ H ₅ CHO				1		
	I				[m	I		

CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) CHE

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

[Turn over

Qn. Nos.	Value Points	Total
15.	Aluminium, Iron, Magnesium and Zinc metals reacted with	
	dilute hydrochloric acid. The series that indicates	
	decreasing order of reactivity of these metals is	
	(A) $Mg > Al > Zn > Fe$ (B) $Al > Mg > Fe > Zn$	
	(C) $Fe > Zn > Al > Mg$ (D) $Fe > Mg > Zn > Al$	
	Ans. :	
	(A) $Mg > Al > Zn > Fe$	1
III.	Answer the following questions : $4 \times 1 = 4$	
16.	1M acetic acid is mixed with 1M sodium hydroxide solution.	
	Determine the nature of the salt forms here with suitable	
	reason.	
	Ans. :	
	* It is a basic salt. $\frac{1}{2}$	
	* Because sodium hydroxide is a strong base. $\frac{1}{2}$	1
17.	Write the structures of isomers of butane.	
	Ans.: H <td></td>	
	$\frac{1}{2} + \frac{1}{2}$	1
18.	Generally ionic compounds have high melting points and	
	boiling points. Why ?	
	Ans. :	
	Ionic compounds require considerable amount of energy to	
	break the strong inter-ionic attraction.	1
19.	"Detergents are better cleansers than soaps." Justify this	
	statement.	
	Ans. :	
	They clean dirt even in hard water without forming a scum.	1

83-E (Chem.)

n. os.		Val	ue Points			Total	
24. Ob	serve the give	n part of	the mode	ern period	lic table and		
an	answer the following questions :						
	Elements	p	q	r	S		
	Atomic No.	4	5	3	7		
i)	Find the vale	ence electro	ons of the	elements	ʻq'andʻr'.		
ii)	Which eleme	nt has larg	ger atomic	size and	why?		
iii)	Find the mos	st electrone	egative ele	ment and	give reason.		
			OR				
Th	e electronic con	nfiguration	of the th	ree elemer	nts x , y and z		
are	e 2,8,7 ; 2,8,8 a	nd 2,8,1 r	espectivel	у.			
i)	Which eleme	nt is the m	nost electr	opositive a	and why ?		
ii)	Which eleme	nt has zer	o valency	and why ?			
iii)	Predict the t	ype of the	chemical	bond that	t forms when		
	'x' and 'z' el	ements re	act each	other and	mention the		
	reason.						
An	S. :						
i)	$q \rightarrow \begin{array}{cc} \mathrm{K} & \mathrm{L} \\ \mathrm{2} & \mathrm{3} \end{array}$	Valence e	electrons	= 3	$\frac{1}{2}$		
	r ightarrow 2 1,	Valence e	electron =	1	$\frac{1}{2}$		
ii)	$r \rightarrow Acro$	ss the per	riod from	left to rigl	nt size of the		
			-		electrtron is		
	toun	d in outer	most she	11.	$\frac{1}{2} + \frac{1}{2}$		
iii)	$s \rightarrow Acro$	ss the peri	iod electro	negativity	increases. $1 1$		
					$\frac{1}{2} + \frac{1}{2}$	3	
	51	, .,,	OR		.1 . 1		
i)		-	-		s the period one valence		
		ron of out		y donates	$\frac{1}{2} + \frac{1}{2}$		
ii)		ermost s		octet	$/ ns^2 np^6$		
		ngement o			$\frac{1}{2} + \frac{1}{2}$		
iii)	Ionic bond. H	-			4 4		
	101110 101110. 1		complete		$\frac{1}{2} + \frac{1}{2}$	2	
1					2 2	3	

Qn. Nos.	Value Points					
25.	a)	If the molecular formula of first member of a homologous series is C_2H_2 , then write the names and				
		the molecular formula of the next two members of the same series.				
	b)	Generally vegetable oils are subjected to hydrogenation.				
	4.000	Why?				
	Ans a)	\rightarrow C ₃ H ₄ : Propyne $\frac{1}{2} + \frac{1}{2}$				
	,	$\rightarrow C_4 H_6: Butyne \qquad \qquad \frac{1}{2} + \frac{1}{2}$				
	b)	To increase the shelf life of vegetable oils / to prevent				
		oxidation of oils / to prevent rancidity.	3			
XI.	Answer the following question : $1 \times 4 = 4$					
26.	a)	Write any two chemical properties of metals and non-				
		metals.				
	b)	Name the following :				
		i) The liquid metal at room temperature				
		ii) The metal that is stored in kerosene.				
	Ans	.:				
	a)	Chemical properties of metals :				
	*	Metals react with oxygen to form basic oxides $\frac{1}{2}$				
	*	Metals react with dilute acids and release hydrogen gas. $\frac{1}{2}$				
	*	Electron donors. (Any <i>two</i>)				
		Chemical properties of non-metals :				
	*	Non-metals react with oxygen to form acidic oxides $\frac{1}{2}$				
		Electron receptors. $\frac{1}{2}$				

Qn. Nos.			Value Points		Total
	b)	i)	Mercury (Hg)	1	
		ii)	Sodium / Potassium [Na / K]	1	4

_

CCE RR/PR/NSR/NSPR **REDUCED SYLLABUS**

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560 003

ಜೂನ್ 2024 ರ ಪರೀಕ್ಷೆ - 2

JUNE 2024 EXAMINATION - 2

ಮಾದರಿ ಉತರಗಳು

MODEL ANSWERS

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Bio)

CODE NO. : 83-E (Bio)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಶಾಲಾ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಖಾಸಗಿ ಪುನರಾವರ್ತಿತ ಅಭ್ಯರ್ಥಿ / ಎನ್.ಎಸ್.ಆರ್. / ಎನ್.ಎಸ್.ಪಿ.ಆರ್.)

(Regular Repeater / Private Repeater / NSR / NSPR)

(ಜೀವಶಾಸ್ತ್ರ / Biology)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

ದಿನಾಂಕ : 20. 06. 2024]

Date : 20. 06. 2024]

PART – C (Biology)

Qn. Nos.	Value Points					
XII.	Multiple choice questions	5:	2 × 1 = 2			
27.	The material transported by	y xylei	m tissue in plants is			
	(A) food	(B)	oxygen			
	(C) water	(D)	carbon dioxide			
	Ans. :					
	(C) water			1		
	CCE-II-RR/PR/NSR/	NSPR(I	B)/999/8038 (MA) BIO	ırn over		

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

	5 55	-E (BIO)
Qn. Nos.	Value Points	Total
XIV.	Answer the following questions : $3 \times 2 = 6$	
31.	Mention any two differences between biodegradable and non-biodegradable substances.	
	OR	
	"We must avoid the use of plastics." Give two reasons.	
	Ans. :	
	Biodegradable substances Non-biodegradable substances	
	 ★ These are degraded by microorganisms ★ Will not be degraded by microorganisms 	
	 ★ These substances enrich the nutrients to the soil ★ Cause pollution 	
	(Any other suitable points) 1 + 1	2
	OR	
	 ★ Plastics do not degrade by microorganisms 1 	
	* Plastics pollute water and soil. 1	
	(Any other suitable points)	2
32.	How father is responsible to determine sex of a child in humans ? Explain. Ans. :	
	* In father the sex chromosomes are odd pair called 'X' and 'Y'.	
	 ★ But in mother both chromosomes are in a perfect pair called 'XX' 	
	CCE-II-RR/PR/NSR/NSPR(B)/999/8038 (MA) BIO	rn over

Qn. Ios.	Value Points	Tota
,	* So, if the child gets 'X' chromosome inherited by father,	
	the sex of a child will be female (XX).	
	★ If the child gets inherited by 'Y' chromosome, the sex of	
	a child will be male.	
I	Hence, the father determines the sex of a child in human	
ł	beings.	2
	OR	
,	★ Parents Father Mother	
	Gametes (XY) (XX) Gametes (XY) (XX)	
	Zygote XX XX Female Female XY XY Male Male	
	If ozone layer is not formed on earth's atmosphere life annot exist on the earth." Justify this statement with two	
re	easons.	
A	ns. :	
	★ Ozone is a protective layer for earth 1	
1	t. Orana matasta south from homeful vadiations emitted	
	\star Ozone protects earth from harmful radiations emitted	

Qn. Nos.		Value Points	Total
XV.	Ans	swer the following questions : $3 \times 3 = 9$	
34.	a)	How does 'touch-me-not' plant respond to touch ?	
		Explain.	
	b)	Mention any one function each of 'auxin' and 'abscissic	
		acid' hormones.	
		OR	
	a)	How muscle cells respond for a nerve impulse ?	
	b)	Mention any one function each of 'insulin' and	
		'estrogen' hormones in humans.	
	Ans	». :	
	a)	* The parts of the plants that are being touched use electrochemical impulses for a movement. $\frac{1}{2}$	
		\star For this movement plant cells change their shape	
		by changing the amount of water in them. 1	
		\star As a result of this change plant cells either swells	
		or shrinks and therefore change the shape of leaves. $\frac{1}{2}$	
	b)	Auxins : They increase cell elongation in the tip of stems. $\frac{1}{2}$	
		Abscissic acid : Inhibits the growth of plants. $\frac{1}{2}$	3
		OR	
	a)	* Muscle cells receive nerve impulses from neurons. $\frac{1}{2}$	
		* Muscle cells converts received electric impulses into chemical signals. $\frac{1}{2}$	
		* Then the special proteins in the muscle cells change their shape and arrangement. $\frac{1}{2}$	

Qn. Ios.	Value Points	Total
	★ Due to this new arrangement of proteins the muscle cells either elongate or become short. $\frac{1}{2}$	
	b) Insulin : Controls the sugar level in blood. $\frac{1}{2}$	
	Estrogen : Promotes development of sex-organs infemales / regulates menstruation cycle. $\frac{1}{2}$	3
35.	Draw the diagram showing the structure of longitudinal	
	section of the human brain and label the following parts :	
	i) Cerebrum	
	ii) Medulla.	
	Ans. :	
	Structure of L.S. of Human brain.	
	(i) Cerebrum	
	For diagram — 2 Labelling — $\frac{1}{2} + \frac{1}{2}$	

Qn. Ios.	Value Points
36. R	ed flowering (RR) 4 O'clock plant is crossed with white
	owering (<i>WW</i>) 4 O'clock plant. There are 25% red flowering, 5% white flowering and 50% hybrids are obtained in F_2
g	eneration. Then,
i)	What are the characteristics of plants of F_1
	generation ?
ii	Show the results of F_2 generation with the help of a
	checker board and mention the genotypic ratio.
ii) Determine the trait that can be considered either as
	'dominant' or 'recessive' by analysing the results of both F_1 and F_2 generations.
	OR
R	ead, analyse the given situations and answer the questions
g	ven below :
	Situation 1: Many vegetables and fruits are now
	available in different colours and sizes.
	available in unicient colours and sizes.
	Situation 2: The colour of the wings in the population
	Situation 2: The colour of the wings in the population
	Situation 2: The colour of the wings in the population of Drosophila insects is turning to black
i)	Situation 2: The colour of the wings in the population of Drosophila insects is turning to black due to the increase of carbon in some
i)	Situation 2: The colour of the wings in the population of Drosophila insects is turning to black due to the increase of carbon in some industrial areas.
i) iij	Situation 2: The colour of the wings in the population of Drosophila insects is turning to black due to the increase of carbon in some industrial areas. In which of the situations the genetic drift happens fastly and why ?
	Situation 2: The colour of the wings in the population of Drosophila insects is turning to black due to the increase of carbon in some industrial areas. In which of the situations the genetic drift happens fastly and why ?

Qn.				Value Points			Total
Nos.				Value Follits			Total
	i)			RR ×	WW		
				RV	V		
		F_1 g	eneration [All	are hybrids]	$\frac{1}{2}$	
	ii)	F_2 g	generation :				
			Gametes	R	W		
			R	RR	RW	1	
			W	RW	WW		
		Geno	otype ratio; 1	: 2 : 1		$\frac{1}{2}$	
	iii)	In F	egeneration 1	00% hybrids	3		
		In F	₂ -generation 5	50% hybrids			
	So,	that	neither red col	lour nor, wh	nite colour is d	ominant /	
	rec	essive				1	3
				OR			
	i)	In sit	tuation (1)			$\frac{1}{2}$	
		Beca	use, the cha	nges illustr	ated here are	done by	
		artifi	cial selection.	/ To get di	fferent varietie	s crossing	
		has l	been conducted	d artificially.		1	
	ii)		tuation (1), tra appen.	aits inherita	nce may happ	en or may $\frac{1}{2}$	
		But,	in the situat	ion (2), the	e genetic varia	tions and	
		their	flow will take	e place. Sind	ce it is natura	l selection	
		and t	traits can be in	nherited.		1	3

Qn. Nos.		Value Points	Total
XVI.	An	swer the following questions : $2 \times 4 = 8$	3
37.	a)	What is sexual reproduction ? Which part of the flower	r
		develops into seed ?	
	b)	What is the role of 'testis' and 'prostate' gland ir	1
		human male reproductive system ?	
	Ans	5. :	
	a)	\star Production of young ones by the fusion o	f
		gametes.	L
		★ Ovule	L
	b)	Testis :	
		★ Production of sperms / male gametes	
		\star Controls the production of testosterone.	L
		Prostate gland :	
		Provides nutritional media for the movement of sperm	
		cells by its secretion.	4
38.	a)	Briefly explain the formation of urine in nephrons.	
	b)	How food materials are transported in higher plants	
		Explain.	

Qn. Ios.		Value Points	Tota
A	Ans.	:	
4	a)	Formation of urine in nephrons :	
		\star Nephron is structural and functional unit of a	
		kidney.	
		\star The thin walled capillaries are the filtration units in	
		the kidney. $\frac{1}{2}$	
		\star Each capillary cluster in the kidney associated with	
		cup shaped structure of the nephron and takes	
		part in the filtration of blood. $\frac{1}{2}$	
		\star In this stage some substances in the initial filtrate,	
		such as glucose, amino acids, salts and major	
		amount of water are selectively re-absorbed. 1	
		The liquid by product that forms after this process is	
		urine.	
1	b)	★ Phloem is a food conducting tissue. $\frac{1}{2}$	
		\star Phloem translocates soluble products of photo-	
		synthesis, amino acids and other substances from	
		the leaves to all the parts of the plants. $\frac{1}{2}$	

Qn. Nos.		Value Points	Total
	*	Translocation takes place in sieve tube, with the	
		help of companion cell, both in upward and	
		downward directions. $\frac{1}{2}$	
	*	Osmotic pressure helps to move the materials from	
		phloem to other tissues having low pressure. $\frac{1}{2}$	4

=