SECOND YEAR HIGHER SECONDARY SECOND TERMINAL EXAMINATION, DECEMBER-2023

Part III

Prepared By: ANOOP CHANDRAN S

CHEMISTRY

CODE: SY25

Qn No.	Sub. Qn.	Value points	Split Score	Total Score
NO.	Q 11.	Answer Any 4 Questions from 1 to 5. Each carries 1 Score	Scole	SCOLE
		Answer Any 4 Questions from 1 to 5. Each carries 1 Score		
1		$(n-1)d^{1-10} ns^{1-2}$		1
2		+3		1
3		PC1 ₅		1
4		CH ₃ – OH		
5		о Г С—Н СНО		
				1
		(OR)		
		 NO ₂ NO ₂		
		Answer Any 8 Questions from 6 to 15. Each carries 2 Score		
	(a)	$Ca^{2+} + 2e \longrightarrow Ca$		
6.		(40g)		
		The electricity to produce 40g of $Ca = 2F$		
		The electricity to produce 20g of Ca = $\frac{2 \times 20}{40} = 1$ F	1	
	(b)	$Al^{3+} + 3e \longrightarrow Al$		2
		(27g)		
		The electricity to produce 27g of $Al = 3F$		
		The electricity to produce 54 g of Al = $\frac{3 \times 54}{27}$ = 6F	1	
7.		Half life = $\frac{0.693}{k}$		
		L.		2
		$=\frac{0.693}{5\times10^{-2}}=13.86 \text{ sec.}$		
		(Equation only – 1 score)		
8.		• In coordination compounds metals show two types of	1/2	
		valencies-primary and secondary.		
		• The primary valences are normally ionisable and are satisfied by negative ions.	1/2	

Answer Key with Solution

		 The secondary valences are non ionisable. These are satisfied by neutral molecules or negative ions. The secondary valence is equal to the coordination number and is fixed for a metal. The ions/groups bound by the secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers. (Any FOUR) 	1/2 1/2	2
9.	(a) (b)	Potassium trioxalatoferrate(III) Amineaquadichloridoplatinum (II)	1	2
10.		Interaction between alkyl halide and water molecules is weaker than Hydrogen bonds in water / alkyl halides cannot form hydrogen bonds with water / attraction between alkyl halide molecule is stronger than attraction between alkyl halide and water. (Any Relevant point)		2
11.		X- CH ₃ CH ₂ Br and Y - CH ₃ CH ₂ OH <i>Hint:</i> $CH_2 = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - Br \xrightarrow{NaOH} CH_3 - CH_2 - OH$		2
12.		Mechanism of dehydration of alcohols involves the formation of carbocation, which is the slowest step. Since the stability of carbo cations thus formed follows the order $3^{\circ}>2^{\circ}>1^{\circ}$, the reactivity also follows the same order.		2
13.	(a)	(a) $\xrightarrow{OH} \xrightarrow{Br_2/H_2O} \xrightarrow{OH} \xrightarrow{Br} \xrightarrow{OH} \xrightarrow{Br}$ $\xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH}$	1	2
	(b)	(b) $\xrightarrow{Br_2/CS_2}$ \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Minor} \xrightarrow{Major}	1	
14.		Benzene is treated with carbon monoxide and hydrogen chloride in the presence of anhydrous aluminum chloride to give benzaldehyde. OR Reaction		2

		CO, HCI		
		Anhyd. AlCl _s /CuCl		
		Benzene Benzaldehyde		
15.		Tollens Test / Fehling's Test (any one) Tollens Test : Propanal gives silver mirror test with Tollen's reagent. Propanone does not gives this test. Fehling's Test : Propanal gives a reddish brown precipitate on reaction with Fehling's reagent (alkaline copper sulphate solution containing sodium potassium tartrate). Propanone does not give this test. (Name of Tests only - Give 1 score)		2
		Answer Any 8 Questions from 16 to 26. Each carries 3 Score		
16.	(a)	During corrosion, the surface of the metal get coated with oxides or other salts of the metal.	1	
	(b)	At Anode: Fe(s) undergoes oxidation to releases electrons. $Fe_{(s)} \rightarrow Fe^{2+}{}_{(aq)} + 2e^{-}$ At Cathode : $O_{2(g)} + 4H^{+} + 4e^{-} \rightarrow 2H_2O_{(l)}$ Net reaction : $Fe_{(s)} + 2H^{+}{}_{(aq)} + \frac{1}{2}O_{2(g)} \rightarrow Fe^{2+}{}_{(aq)} + \frac{1}{H_2O}$ The ferrous ions are further oxidised by atmospheric oxygen to ferric ions which come out as rust in the form of hydrated ferric oxide (Fe ₂ O ₃ . x H ₂ O). (Any One Reaction - Give 1 Score)	2	3
17.	(a) (b) (c)	chromite ore / FeCr ₂ O ₄ Any One Correct Reaction {NCERT Page 232} $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}^{2-}$ chromate ion	1 1 1	3
18.		Crystal Field Splitting in Octahedral Crystal Field There will be repulsion between electrons in the metal d orbitals and electrons of ligand. The repulsion becomes when the d orbital of metal is directed towards the ligand. Consequently dx^2-y^2 and dz^2 which are in the axis experiences more repulsion hence lower energy constitute the eg orbital set. Dxy, dxz, dyz will be of lower energy constituting the t2g set of orbitals.		3

(b) $A \rightarrow M \leftarrow B$ $A \rightarrow M \leftarrow B$ $(Cis-isomer)$ $A \rightarrow M \leftarrow B$ $(Cis-isomer)$ 121.SNI Reaction SNI reactions are accompanied by racemisation. This is because, the incoming nucleophile can attack from either of the sides resulting in racemisation. SN2 Reaction SN2 Reaction SN2 Reaction group.33 $OH \rightarrow H \rightarrow C - CI \rightarrow HO$ $H \rightarrow H \rightarrow C - CI \rightarrow HO$ $H \rightarrow H \rightarrow C - CI \rightarrow H \rightarrow H$ $A \rightarrow M \rightarrow M$ 22.(a) (b)Greater inter molecular hydrogen bonding in alcohols. $OH \rightarrow H \rightarrow H \rightarrow C \rightarrow H$ $H \cap - C \rightarrow H \rightarrow H$ 122.(a) (b)Greater inter molecular hydrogen bonding in alcohols. $M \rightarrow H \rightarrow $		tetrahedral complex, the positons of the unidentate ligands are identical with respect to each other and hence show optical isomerism and not geometric. / Relevant Answer	2	3
21. SN1 reactions are accompanied by racemisation. This is because, the incoming nucleophile can attack from either of the sides resulting in racemisation. 3 3 SN2 Reaction SN2 Reaction is accompanied by inversion of configuration because incoming nucleophile attack the alkyl halide from a side opposite to that of the leaving group. 3 $OH \rightarrow H \rightarrow C = CI \rightarrow H \rightarrow H$ $HO = C \rightarrow H$ $HO = C \rightarrow H$ $HO = C \rightarrow H$ 22. (a) Greater inter molecular hydrogen bonding in alcohols. 1 $P \rightarrow H \rightarrow H \rightarrow C \rightarrow H$ $HO = C \rightarrow H \rightarrow H \rightarrow H$ 2 3 22. (a) Greater inter molecular hydrogen bonding in alcohols. 1 2 $P \rightarrow H \rightarrow H \rightarrow C \rightarrow H \rightarrow H \rightarrow H \rightarrow H \rightarrow H \rightarrow H \rightarrow H$	(b)	A B B A A A A A A A A A A A A A A A A A	1	
$\begin{array}{ c c c c } \hline (a) & \text{Off} & \text{OH} & \text{OH} & \text{OH} & 1 \\ \hline (b) & \begin{array}{c} & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & & \text{OH} & 1 \\ \hline & & & \text{OH} & \text{OH} & 1 \\ \hline & & & \text{OH} & 1 \\$	21.	SN1 reactions are accompanied by racemisation. This is because, the incoming nucleophile can attack from either of the sides resulting in racemisation. SN2 Reaction SN2 Reaction is accompanied by inversion of configuration because incoming nucleophile attack the alkyl halide from a side opposite to that of the leaving group. $OH \rightarrow H \rightarrow C - CI \rightarrow HO \rightarrow H \rightarrow HO \rightarrow H \rightarrow HO \rightarrow C \rightarrow H \rightarrow H \rightarrow HO \rightarrow C \rightarrow H \rightarrow H \rightarrow H \rightarrow C \rightarrow C \rightarrow H \rightarrow H \rightarrow C \rightarrow C$		3
 When alcohols treated with Lucas Reagent (conc. HCI + anhydrous ZnCl₂), tertiary alcohols gives the turbidity due to the formation of alkyl chloride immediately. Secondary alcohols react within 10 minutes to form a turbidity of alkyl chloride primary alcohols do not react at room temperature. OR Reactions. Name of Test Only – 1 score 	(a)	$\overbrace{\text{Conc.HNO}_3}^{\text{OH}} \xrightarrow{\text{OH}} \text{NO}_2$	1 2	3
	23.	 When alcohols treated with Lucas Reagent (conc. HCI + anhydrous ZnCl₂), tertiary alcohols gives the turbidity due to the formation of alkyl chloride immediately. Secondary alcohols react within 10 minutes to form a turbidity of alkyl chloride primary alcohols do not react at room temperature. OR Reactions. 	1	3

24.	(a)	Aldol Condensation : Aldehydes and ketones having atleast one α - hydrogen condense in the presence of dilute alkali as catalyst to form β -hydroxy aldehydes (aldol)or β -hydroxy ketones (ketol). / Reaction Cannizaro Reaction : Aldehydes which do not have alpha		2
		hydrogen atom, on heating with concentrated alkali undergo self oxidation and reduction reaction or redox reaction. / Reaction		
	(b)	Cannizaro reaction is given by aldehydes which donot have an alpha hydrogen where as aldol condensation is given by aldehydes and ketones with atleast one alpha hydrogen. (OR) Cannizaro Reaction takes place in conc. Alkali, where as aldol condensation takes place in dilute alkali (OR) Cannizaro reaction is a disproportionation reaction, where as aldol condensation is an addition reaction (Any One point is Sufficient)		1
25.	(a) (b)	CH ₂ C/COOH Due to the -I effect (electron withdrawing of chlorine atom, the	1	
	(c)	stability of chloroacetate ion is more than that of acetaete ion. Hell-Volhard-Zelinsky reaction / HVZ Reaction $CH_3COOH \xrightarrow{Cl_2/red} CICH_2 - COOH$	1	3
26.	(a)	Pd – BaSO ₄	1	
	(b)	$\begin{array}{c} CH_{3} \\ \hline \\ \hline \\ H_{3}O^{+} \end{array} \xrightarrow{CHO} \end{array}$	1	
		Toluene Benzaldehyde	1	3
	(c)	CH ₃ CHO		
27.	(a)	Answer Any 4 Questions from 27 to 31. Each carries 4 Score Dissolution of gases in liquid is an exothermic process. Hence when temperature increases, The equilibrium of Gas, solvent and solution will be shifted in backward direction / Increasing temperature increases entropy, decreases solubility.	2	
	(b)	KCl is a strong electrolyte. Van't Hoff factor,		
				4

		$i = \frac{\text{No.of particles after dissociation}}{\text{No.of particles before dissociation}}$ $KCl \longrightarrow K^+ + Cl^-$ $\therefore i = \frac{2}{1} = 2$ Acetic acid undergo dimerise in benzene due to hydrogen bonding which reduces the number of particles. / Relevant Answer $NOTE : \text{This is applicable only when CH}_3COOH is dissolved in Benzene. If it is dissolved in water, The value of Van't Hoff factor, will be greater than 1, and not 0.5.$	2	
28.		 Ionization isomerism:- Isomers having same molecular formula but give different ions in solution Solvate isomerism (Hydrate isomerism) : - Isomers having same molecular formula but different number of water molecules inside and outside the coordination sphere. Linkage isomerism :- Linkage isomerism is shown by complexes containing ambidentate ligands. linkage of ambidentate ligand to the central metal atom is different Eg. NO2 - can link through nitrogen atom or oxygen atom. Coordination isomerism:- Coordination isomerism occurs in compounds containing both cationic anionic coordination spheres. This isomerism arises due to interchange of ligands between cationic and anionic coordination spheres 		4
29.	(a) (b) (c)	CH ₃ I Since, iodide ion is better leaving group than bromide ion, CH ₃ Iwill react faster than methyl bromide in SN2 reaction with nucleophile OH- Any one Reaction Halogenation / Nitration / Sulphonation / Friedel-Crafts reaction	1 1 2	4
30.	(a) (b)	When ethyl alcohol is mixed with petrol or gasoline and used as fuel, it is called Power Alcohol / Mixture of 80 : 20 % of Petrol and Ethanol. The phenoxide ion formed from phenol is stabilised through resonance.	1	

