Marking Scheme Class X Session 2024-25 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

Q.No.	Section A					
1.	D) -6,6	1				
2.	B) -5	1				
3.	D) From a point inside a circle only two tangents can be drawn.	1				
4.	A) 7	1				
5.	B) 20 cm	1				
6.	A) ¹¹ / ₉	1				
7.	C) 140 ⁰	1				
8.	B) 8 <i>x</i> ² - 20	1				
9.	C) 30	1				
10.	B) isosceles and similar	1				
11.	A) Irrational and distinct	1				
12.	C) $\frac{3}{\sqrt{3}}$	1				
13.	B) $\frac{594}{7}$	1				
14.	B) $\frac{3}{8}$	1				
15.	B) (-4, 0)	1				
16.	A) median	1				
17.	C) (3,0)	1				
18.	D) $\frac{3}{26}$	1				
19.	В)	1				
20.	D)	1				

	Section B						
21. (A)	$480 = 2^{5} \times 3 \times 5$ 720 = 2 ⁴ × 3 ² × 5	1/2 1/2					
	LCM (480,720) = $2^5 \times 3^2 \times 5 = 1440$	1⁄2					
	HCF (480, 720) = $2^4 \times 3 \times 5 = 240$						
	OR						
(B)	85 = 5x17, 238 = 2x7x17 HCF(85, 238) = 17	1					
	17 = 85xm -238 m = 3	1					
22.(A)	Total number of possible outcomes = 6x6=36 For a product to be odd, both the numbers should be odd. Favourable outcomes are (7,7) (7,9) (7,11) (9,7) (9,9) (9, 11) (11,7) (11,9) (11,11) no. of favourable outcomes = 9	1/2					
	P (product is odd) = $\frac{9}{36}$ Or $\frac{1}{4}$	1 ½					
	OR						
(B)	Total number of three-digit numbers = 900. Numbers with hundredth digit 8 & and unit's digit 5 are 805,815,	1/2					
	825,,895 Number of favourable outcomes = 10 P(selecting one such number) = $\frac{10}{900}$ Or $\frac{1}{90}$						
23.	$2 \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2$	1 ½					
	$\frac{2 \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^2}{\left(\sqrt{2}\right)^2} = \frac{7}{12}$	1⁄2					
24	Let the required point be (x,0)	1⁄2					
	$\sqrt{(8-x)^2 + 25} = \sqrt{41}$ => $(8-x)^2 = 16$ => $8 - x = \pm 4$	1⁄2					
	=> x = 4 , 12 Two points on the x-axis are (4,0) & (12,0).	1					

	$\triangle AQR \sim \triangle ACD$	
	AQ RQ	
	$=>\frac{AQ}{AC}=\frac{RQ}{DC}\qquad \dots \dots \qquad (ii)$	
		1
	Now, $\frac{AP}{AB} = \frac{AQ}{AC}$ (iii)	
	AB AC PP PO	
	Using (i), (ii) & (iii), $\frac{PR}{BD} = \frac{RQ}{DC}$	1
	But, $BD = DC$	
	=> PR = RQ or AD bisects PQ	
27.	Let the numbers be x and 18-x.	1/2
		1
	$\frac{1}{x} + \frac{1}{18 - x} = \frac{9}{40}$	
	$= 18 \times 40 = 9 \times (18 - x)$	
	$= x^2 - 18 x + 80 = 0$	
	=> (x-10)(x-8) = 0	1
	=> <i>x</i> =10, 8.	
	=> 18- <i>x</i> =8, 10	1/2
	Hence two numbers are 8 and 10.	
28.	From given polynomial $\alpha + \beta = \frac{5}{2} - \alpha \beta = \frac{1}{2}$	1
	From given polynomial $\alpha + \beta = \frac{5}{6}$, $\alpha\beta = \frac{1}{6}$	
	$\alpha^2 + \beta^2 = (\frac{5}{6})^2 - 2 \times \frac{1}{6} = \frac{13}{36}$	1
	6 36 6 36	
	1 1	1/2
	And $\alpha^2 \beta^2 = (\frac{1}{6})^2 = \frac{1}{36}$	
	6 36	
	2 13 1	
	$x^2 - \frac{13}{36}x + \frac{1}{36}$	1/2
	\Rightarrow Required polynomial is $36x^2 - 13x + 1$	
29.	$(\cos\theta + \sin\theta)^{2} + (\cos\theta - \sin\theta)^{2} = 2(\cos^{2}\theta + \sin^{2}\theta) = 2$	
_	$(\cos \theta + \sin \theta)^{2} + (\cos \theta - \sin \theta)^{2} = 2$	1 ½
	$=>(\cos\theta - \sin\theta)^2 = 1$	1
	$\Rightarrow \cos\theta - \sin\theta = \pm 1$	1/2
30.(A)	Angle described by minute hand in 5 min = 30° .	
. ,	length of minute hand $=18$ cm $=$ r.	
	Area swept by minute hand in 35 minutes	_
	$=(\frac{22}{7} \times 18 \times 18 \times \frac{30}{360}) \times 7$	2
	$= 594 \ cm^2$.	1
	OR	
	Area of minor commont - Ar Sector OAB Ar 4 OAB	
(B)	Area of minor segment = Ar. Sector OAB- Ar. \triangle OAB	2
	$=\frac{60}{360} \times \frac{22}{7} \times 14 \times 14 - \frac{\sqrt{3}}{4} \times 14 \times 14$	2
	$= 17.89 \mathrm{cm}^2$	

31.	Let $\sqrt{3}$ be a rational number.	1/2					
	∴ $\sqrt{3} = \frac{p}{a}$, where q≠0 and let p & q be co-prime.	/2					
	$3q^2 = p^2 \implies p^2$ is divisible by $3 \implies p$ is divisible by $3 (i)$ $\implies p = 3a$, where 'a' is some integer						
	\Rightarrow p = 3a, where a is some integer $9a^2 = 3q^2 \Rightarrow q^2 = 3a^2 \Rightarrow q^2$ is divisible by 3 \Rightarrow q is divisible by 3 (ii) (i) and (ii) leads to contradiction as 'n' and 'd' are as prime						
	(i) and (ii) leads to contradiction as 'p' and 'q' are co-prime.						
	Section D						
32.(A)	x+2y=3, 2x-3y+8=0 Correct graph of each equation Solution x=-1 and y=2	2+2 = 4 1					
	OR						
(B)	Let car I starts from A with speed x km/hr and car II Starts from B with speed y km/hr (x>y)						
	Case I- when cars are moving in the same direction. Distance covered by car I in 9 hours = 9x. Distance covered by car II in 9 hours = 9y Therefore 9 (x-y) = 180 => x-y= 20(i)	2					
	case II- when cars are moving in opposite directions.						
	Distance covered by Car I in 1 hour = x Distance covered by Car II in 1 hour = y						
	Therefore x + y=180 (ii)	2					
	Solving (i) and (ii) we get, x=100 km/hr, y=80 km/hr.	1					
33.	Correct given, to prove, construction, figure	1					
	Correct proof	2					
	AR = AQ = 7cm BP = BR = AB-AR = 3cm CP = CQ = 5cm BC = BP+PC = 3+5 = 8 cm	1/2 1/2 1/2 1/2					

34.	A	60° 30° X G	h	C h F 1.35 E	5 m			Correct figure 1mark
	Let A be the eye level & B, C are positions of balloon Distance covered by balloon in 12 sec = $3x12 = 36$ m BC = GF = 36 m							1
	tan $60^{0} = \sqrt{3} = \frac{h}{x}$ => h = x $\sqrt{3}$ (i)							1
	$\tan 30^0 = \frac{1}{\sqrt{3}} = \frac{h}{x+36}$							1
	=> h = $\frac{x+36}{\sqrt{3}}$ (ii) Solving (i) and (ii) h= $18\sqrt{3}$ = 31.14 m Height of balloon from ground = 1.35 + 31.14 = 32.49 m						1	
35.								Correct
		Class	x	f	$u = \frac{x - 102.5}{5}$	fu	cf	table 2marks
		85-90	87.5	15	-3	-45	15	
		90-95	92.5	22	-2	-44	37	
		95-100	97.5	20	-1	-20	57	
		100-105	102.5	18	0	0	75	
		105-110	107.5	20	1	20	95	
		110-115	112.5	25	2	50	120	
				<i>Σ</i> f = 120		Σfu = -39		
	Mean = \overline{x} = 102.5 - 5 x $\frac{39}{120}$ = 100.875 Median class is 100-105 Median = 100 + $\frac{5}{18}$ (60-57) = 100.83							1 ½ ½ 1
					OR			

	Monthly Expenditure	£		f		Corroct
	Monuny Experiature	fi	Xi	f _i x _i		Correct table
	1000-1500	24	1250	30,000		2marks
	1500-2000	40	1750	70,000		
	2000-2500	33	2250	74,250		
	2500-3000	X=28	2750	77,000		
	3000-3500	30	3250	97,500		
	3500-4000 4000-4500	22 16	3750 4250	82,500		
	4500-5000	7	4750	68,000 33,250		
	1500 5000	,	1750	33,230		
	172+x=200					1
	X=28					1
	Mean= $\frac{532500}{200}$					
	= 2662.5					1
			Sectior	E		
36.(i)	First term a = 3, A.					1/2
		common	difference d	= 6-3 = 3		1/2
(ii)	34 = 3+ (n-1)3					
()	=> n = 34/3 = 11	l ¹ / ₋ which	is not a posit	ive integer.		1/2
		3			attern is	17
	Therefore, it is not possible to have 34 jars in a layer if the given pattern is continued.					1/2
(iii)(A)	$S_n = \frac{n}{2} [2x3 + (n-1)3]$					
	$S_n = \frac{n}{2} [2x3 + (n-1)3]$ $= \frac{n}{2} [6 + 3n-3]$	ני				1
						1
	$=\frac{n}{2}[3+3n]$					
	$= 3\frac{n}{2}[1+n]$					
	$s_8 = 3 x \frac{8}{2} (1+8)$					1/2
	= 108					
			OR			
	A.P will be 6, 9, 12,					17
(iii) (B)	a= 6, d=3					1/2
	$t = 6 \pm (5.1)^2$					
	$t_5 = 6 + (5-1)3$ = 6 + 12					1
	= 18					1/2
						/2
37. (i)	∠DPQ = ∠DEF					
	∠PDQ =∠EDF					
			.			1
(ii)	(ii) Therefore \triangle DPQ ~ \triangle DEF DE = 50 + 70 = 120 cm					
	$\frac{DP}{DE} = \frac{PQ}{EF}$					
	D1					

	Therefore $\frac{PQ}{EF} = \frac{50}{120}$ or $\frac{5}{12}$	1⁄2				
(iii) (A)	$\frac{AB}{DE} = \frac{5}{2} = \frac{BC}{EF} = \frac{AC}{DF}$ $\Rightarrow AB = \frac{5}{2} DE$					
	$\frac{perimeter \ of \ \triangle ABC}{perimeter \ of \ \triangle DEF} = \frac{\frac{5}{2}(DE + EF + FD)}{DE + EF + FD} = \frac{5}{2} \text{ (Constant)}$	1				
	OR					
(iii)(B)	A B M C E N F	Correct fig. ½ mark				
	$\frac{AB}{DE} = \frac{BC}{EF} = \frac{BC/2}{EF/2} = \frac{BM}{EN}$ Also $\angle B = \angle E$	1				
	Therefore \triangle ABM ~ \triangle DEN.	1⁄2				
38. (i)	$ = \sqrt{r^2 + h^2} $ = $\sqrt{(1.5)^2 + (2)^2} $	1⁄2				
	$=\sqrt{2.25 + 4}$ = $\sqrt{6.25}$					
(**)	= 2.5 m	1⁄2				
(ii)	CSA of cone = Π rl = $\frac{22}{7} \times 1.5 \times 2.5$	1⁄2				
	$=$ 11.78 m^2	1⁄2				
(iii) (A)	CSA of cylinder = 2Π rh = $2 \times \frac{22}{7} \times 1.5 \times 7$	1				
	= 66 m^2 Cost of metal sheet used = 66 x 2000 = ₹1,32,000	1				
(iii) (B)	OR Volume of cylinder = $\pi r^2 h$ = $\frac{22}{7} \times (1.5)^2 \times 7$					
	$= 49.5 m^3$	1⁄2				

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

= $\frac{1}{3} \times \frac{22}{7} \times (1.5)^2 \times 2$
= 4.71 m³
Total capacity = 49.5 + 4.71 = 54.21 m³
 $\frac{1}{2}$