1. A stone tied to the end of a string is whirled by a boy in a horizontal circle at constant velocity. While doing this experiment, he realised that the force required for rotation may depend upon mass m velocity, v and radius r.
(a) Find the formula for force required for rotating using the method of dimensions.
(b) Check the correctness of this formula using the method of dimensions.
2. Fill in the blanks:

\quad A	B	C
a) Power	watt	$\ldots \ldots \ldots .$.
b) $\ldots \ldots \ldots .$.	kgm^{2}	ML^{2}.
c) Torque	joule	$\ldots \ldots .$.
d) Surface Tension	\ldots.	MT^{-2}.

3. The graph shows the $v-t$ graph of a moving car.
(a) The type of motion represented by PQ.
(b) Find the retardation of the car before coming to rest.

(c) Find the total distance travelled by the car before coming to rest.
4. A boy throws a cricket ball with a velocity u at an angle with horizontal.
(a) What is the path followed by the ball?
(b) What are the vertical and horizontal components of velocity at the highest point?
(c) Derive expression for time of flight and horizontal range of the ball.
5. Ablock of mass m rests on an inclined plane at an angle of with the horizontal.
(a) Draw a diagram representing various forces acting on the block.
(b) When the mass just begins to slide down, what is the coefficient of friction between block and surface? $\{2\}$
6. A man of mass 70 kg stands on a weighing scale in the lift. What is the reading of the scale when:
(a) The lift is moving upwards with uniform speed of $10 \mathrm{~m} / \mathrm{s}$.
(b) The lift is moving upwards with an acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$.
(c) The lift is moving down with an acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$.
(d) The lift mechanism failed and it fall down freely under gravity.
7. Work is required to be done to lift a body from the ground. Let the body be dropped from height h.
(a) State work energy theorem.
(b) Draw graphically its variation of KE and PE.
(c) A boy catches the ball at the ground and he draws his hands backwards while catching the ball. Why? $\{1\}$
8. The formation of tides in ocean is due to the force of attraction between moon and ocean water.
(a) State the law which governs this phenomenon.
(b) Distinguish between g and G. How are they related to each other?
(c) The acceleration due to gravity at the moon's surface is $1.67 \mathrm{~m} / \mathrm{s}^{2}$. If the radius of the moon is $1.74 \times 10^{6} \mathrm{~m}$. Calculate the mass of the moon.
9. Two forces with equal magnitude but opposite directions are acting on a body.
(a) What is the condition for calling the above pair of forces a couple?
(b) Explain the term moment of couple.
(c) Obtain the expression for moment of couple.
10. A boy dips a thin tube in water and water rises through it.
(a) Name the phenomenon.
(b) How does this rise vary with the radius of the tube.
(c) Mention any two factors affecting the rise of the liquid.
11. Bernoulli's theorem has a lot of applications in fluid dynamics.
(a) State and explain equation of continuity for a liquid in steady flow.
(b) Explain how a cricket ball spins in air?
12. Match the following.

A

B

a) Mayer's relation
$\mathrm{PV}=$ constant.
b) Adiabatic process
$C_{p}-C_{V}=R$.
c) Frequency
$a \operatorname{Sin}(k x-t)$
d) S. H.M

1/T.
13. A patient is admitted to hospital. The temperature of the patient is found to be $100^{\circ} \mathrm{F}$.
(a) What is meant by temperature?
(b) Convert this temperature into degree Celsius.
14. Agraph showing temperature versus heat is given.
(a) What does the horizontal region BC and DE represent?
(b) What does the slope CD represent?

15. Heat engine is a device which converts heat energy into mechanical energy.
(a) Which law of thermodynamics is used to explain working of heat engine?
(b) What are sink, source, and working substance of a domestic refrigerator?
(c) Explain the operations of a Carnot's engine. Drawt the Carnot's cycle and deduce the expression for efficiency. $\quad v=\sqrt{ }$
16. The displacement of a particle in SHM is given by $y=\operatorname{asin} t$. From this derive expressions for maximum velocity and maximum acceleration. Also draw their graphs.
17. A transverse harmonic wave on a string is given by $y(x, t)=3 \sin (36 t+0.018 x+/ 4)$ where x and y are in $c m$ and t in seconds. The $+v e$ direction of x is from left to right.
(a) Is this a travelling or standing wave? What is the speed and direction of propagation?
(b) What are amplitude and frequency?
(c) What is the initial phase at the origin?
(d) What is its wavelength?
18. The formula $v=\sqrt{\frac{P}{}}$ is used to explain the speed of sound in air.
(a) Who discovered this formula?
(b) Is it affected by pressure?
(c) What happens to speed if temperature and humidity is increases.

