PC10 CUSAL	Test Booklet Series C
LL No. 1 5 6 1 2 QN. BOOKLET	07101
TEST FOR FIRST DEGREE PROGRAMMES ENGINEERING AND TECHNOLOGY	IN
PHYSICS AND CHEMISTRY 1 Hour and 30 Minutes	Maximum Marks: 375
INSTRUCTIONS TO CANDIDATES	
You are provided with a Question Booklet and an Optical Mark Romark your responses. Do not soil your OMR Sheet. Read careful the OMR Sheet.	
2. Write your Roll Number in the space provided on the top of this pa	ge.
3. Also write your Roll Number, Test Centre Code, Test Centre Nat and time of the examination in the columns provided for the same of the appropriate bubbles with HB pencil.	ne, Test Subject and the date on the Answer Sheet. Darken
4. Darken the appropriate bubble corresponding to the Test Booklet this page, in the OMR Answer Sheet. If the corresponding bub answer sheets will not be valued and will be summarily rejected	bles are not darkened, such
5. The paper consists of 125 objective type questions, out of which t	
Physics and the remaining 50 questions are from Chemistry. All qu	he first 75 questions are from estions carry equal marks.
 6. Each question has four alternative responses marked A, B, C and I bubble fully by HB pencil corresponding to the correct responses shown on the Answer Sheet. Write the alphabet of your response column and for unattempted question put a 'X' mark by ball pen is in the example in the OMR. 	and you have to darken the as indicated in the example
 6. Each question has four alternative responses marked A, B, C and I bubble fully by HB pencil corresponding to the correct response shown on the Answer Sheet. Write the alphabet of your response column and for unattempted question put a 'X' mark by ball pen i in the example in the OMR. 	and you have to darken the as indicated in the example with Ball Pen in the starred in the starred column as given
 Each question has four alternative responses marked A, B, C and I bubble fully by HB pencil corresponding to the correct response shown on the Answer Sheet. Write the alphabet of your response column and for unattempted question put a 'X' mark by ball pen i in the example in the OMR. Each correct answer carries 3 marks and each wrong answer carries 	estions carry equal marks. and you have to darken the as indicated in the example with Ball Pen in the starred in the starred column as given 1 minus mark.
 6. Each question has four alternative responses marked A, B, C and I bubble fully by HB pencil corresponding to the correct response shown on the Answer Sheet. Write the alphabet of your response column and for unattempted question put a 'X' mark by ball pen i in the example in the OMR. 	 estions carry equal marks. and you have to darken the as indicated in the example with Ball Pen in the starred on the starred column as given 1 minus mark. nd of this question booklet.
 6. Each question has four alternative responses marked A, B, C and I bubble fully by HB pencil corresponding to the correct response shown on the Answer Sheet. Write the alphabet of your response column and for unattempted question put a 'X' mark by ball pen i in the example in the OMR. 7. Each correct answer carries 3 marks and each wrong answer carries 8. Please do your rough work only on the space provided for it at the e 9. You should return the Answer Sheet to the Invigilator before you 	 estions carry equal marks. and you have to darken the as indicated in the example with Ball Pen in the starred of the starred column as given 1 minus mark. and of this question booklet. a leave the examination hall.

PHYSICS AND CHEMISTRY Conception and All Controls

- A black body at high temperature emits radiations of 1.
 - (A) large wavelengths

101PC10

- (B) small wavelengths
- (C) one fixed wavelength
- (D) all wavelengths

A man first moves 3 m due east, then 6 m due north and finally 7 m due west, then the magnitude of the resultant displacement is:

(A)	$\sqrt{16}$	(B)	$\sqrt{24}$
	√52	(D)	$\sqrt{94}$

3.

2.

Which of the following distance-time graphs represents one dimensional uniform motion?

A bullet fired from a gun at sea level rises to a maximum height of 10 m. When fired at a ship 40 m away, the muzzle velocity should be

(A)	20 m/s	(B) 15 m/s
(C)	16 m/s	(D) none of the above

5.

4.

When a bicycle is in motion but not pedaled, the force of friction exerted by the ground on the two wheels is such that it acts:

- (A) In the backward direction on both the wheels
- (B) In the forward direction on both the wheels
- (C) In the forward direction on the front wheel but in the backward direction on the rear wheel
- (D) None of the above

When a carpet is beaten by a stick, the dust particles drop down according to

(A) Newton's 1st Law of motion (B) Newton's 2nd Law of motion (C) Newton's 3rd Law of motion

WW. CLIS Test Booklet Series

101PC10

8.

9.

12

n

A bomb of mass 16kg at rest explodes into two pieces of masses 4kg and 12kg. The velocity of the 12kg mass is 4 ms⁻¹. The kinetic energy of the 7. other mass is

2

(A)	144 J	(B)	288 J
0.000	244 J	(D)	268 J

Two SHM $x = a \sin \omega t$ and $y = b \cos \omega t$ directed along x and y axis respectively are acted on particle. The path of the particle will be a

(A)	Circle	(B)	Straight line
(C)	Ellipse	(D)	Parabola

If S is stress and Y is Young's modulus of material of a wire, the energy stored in the wire per unit volume is

(A)	2 S ² Y	(B)	S ² /2Y
(C)	$2Y/S^2$	(D)	S/Y

10. A cat while jumping from one wall to another makes use of the Law of

- (A) conservation of linear momentum
- (B) conservation of angular momentum
- (C) conservation of energy
- (D) None of the above

(A) 5 (C) 1 (B) 3 (C) 1 (C) 1 (B) 3 (C) 1 (C) 1

(A)	5	(B) 3
(C)	1	(D) 2

12.

13.

The electromagnetic waves in the range of wavelength 3 mm to 100 cm are used in general for the purpose of satellite communication. The corresponding frequency range is

(A)	30 MHz to 10" MHz	(B)	300 MHz to 10 ⁵ MHz
(C)	3 MHz to 10° MHz		3 MHz to 10 ⁸ MHz

According to Maxwell, a changing electric field with respect to time produces

	electric current	(B)	emf
(C)	magnetic field	(0)	CIIII
(0)	magnetic field	(D)	radiation pressure

14. Find the electric field strength if the potential of field depends upon x, y coordinates as $\phi = a(x^2 - y^2)$

(A)
$$E = 2a\sqrt{x^2 + y^2}$$

(B) $E = a\sqrt{x^2 + y^2}$
(C) $E = \frac{a}{2}\sqrt{x^2 + y^2}$
(D) $E = a\sqrt{\frac{1}{x^2 + y^2}}$

15. A thin non-conducting ring of radius r has linear charge density $q = q_0 \cos \theta$, where q_0 is constant and θ is angle at the centre from the diameter of maximum charge density in the anticlockwise direction. Find electric field at centre of ring.

(A)
$$\frac{q_0}{\varepsilon_0 r}$$
 (B) $\frac{q_0}{4\varepsilon_0 r}$
(C) $\frac{q_0}{2\varepsilon_0 r}$ (D) $\frac{q_0}{3\varepsilon_0 r}$

16. Calculate the self potential energy of a charge q distributed over the surface of a hollow sphere of radius R

(A)	$\frac{q^2}{8\varepsilon_0 R}$	(B)	$\frac{q^2}{4\varepsilon_0 R}$
(C)	$\frac{q^2}{4\pi\varepsilon_0 R}$	(D)	$\frac{q^2}{8\pi\varepsilon_0 R}$

 A charge moving with velocity v in X direction is subjected to a field of magnetic induction in the negative X direction. As a result the charge will

- (A) remain unaffected
- (B) start moving in a circular path Y-Z plane
- (C) retard along X-axis
- (D) move along a helical path around X-axis

18. The frequency of the e.m. wave which is best suited to observe a particle of radius 3×10^{-4} cm is of the order of:

1--

(A)	1015	(B)	10 ¹⁴
(C)	10 ¹³	(D)	

To an astronaut in the spaceship, the sky appears pitch dark. This is due to: 19.

- (A) absence of atmosphere in neighbourhood
- (B) light from sky is absorbed by medium surrounding him
- (C) the fact that at height, the sky radiations are only infrared and ultraviolet
- (D) the fact that human eye becomes blind from blue colour
- How will an image produced by a lens change, if half the lens is wrapped in 20. black paper?
 - (A) there will be no effect
 - (B) the size of image will be reduced to one half
 - (C) the image will disappear
 - (D) the brightness of the image will be reduced
- 21. In the case of optical fibres, the outer cladding materials compared to the core materials of the fibre has
 - (A) the same refractive index
 - (B) higher refractive index (D) lower refractive index
 - (C) imaginary refractive index

Rays of light having a wavelength λ are diffracted at an angle θ while passing 22. through a single slit of width d. The condition for the first order minimum is

(A)	$\cos\theta = \lambda/d$	(B)	$\sin\theta = \lambda/d$
(C)	$\tan\theta = 2\lambda/d$	1 mm	$\sin\theta = 2\lambda/d$

When a ray of light travels from one medium to another medium, the physical 23. quantity that does not change is the

0.0722/07	Velocity ,	(B)	Fragues
(C)	Wavelength	(D)	Frequency
		(D)	Amplitude

- Depth of clear water in a well is 5.5 m and the refractive index of water is 24. 1.33. Viewing from the top, the bottom of the well appear
 - - (A) 1.37 m shifted up (B) 1.37 m shifted down in depth (C) 2.65 m shifted up
 - (D) Same as 5.5 m in depth

The doublet structure of the sodium 'D' line at 588.99nm and at 589.59 nm is

- Spin-spin interaction (A)
- Tensor interaction (C)

Spin-orbit interaction (B)

Coulomb Interaction (D)

NAB

.A

B

101PC10

Generally the temperature of a distant star is estimated using 26.

- (A) The luminosity measurements
- The red shift measurements (B)
- Doppler broadening of spectral lines (C)
- (D) Absorption spectra

Dark lines in the solar spectrum are known as 27.

> **Emission Lines** (B) (A) Fresnel's Lines Fraunhofer Lines

5

- (D) (C) Balmer Lines
- The pressure and kinetic energy of ideal molecular gas numerically is related 28. as
 - (B) $P = \frac{2}{3}E$ (D) $P = \frac{3}{2}E$ (A) P = E(C) $P = \frac{1}{3}E$

The total number of helium atoms in 1 gm of Helium gas would be close to 29.

(A)	3×10^{23}	(B)	6×10^{23}
(C)	12×10^{23}	(D)	6×10^{21}

5 litre of water at 80° C is to be cooled down to 20° C by mixing cold water at 30. 0° C. How much of the cold water is required?

(A)	1.5 litre	(B)	3.0 litre
(C)	15.0 litre	1000	5.0 litre

A system consists of three coins. Tossing all the three coins simultaneously 31. results into two coins heads up. What is the entropy of the system?

(A)	k <i>ln</i> 3	(B)	k In 6
(C)	k <i>ln</i> 2	100.0	
(0)	K III 2	(D)	zero

The relationship between the current density J and the electric field E given 32. by $\vec{J} = \sigma \vec{E}$ equivalently represents

(A)	Maxwells Law	(B)	Ohm's Law
(C)	Coulomb's Law	(2)	Omin's Law
(0)	Coulomb's Law	(D)	Gauss's Law

33. Select the expression representing a correct De Morgan's theorem.

(A) $A + B = \overline{A} + \overline{B}$ (B) $A + B = \overline{A} \circ \overline{B}$ (C) $A+B=A \circ \overline{B}$ $\overline{A+B} = A+B$ (D)

The circulation of magnetic field H around a closed path is equal to the current 34. enclosed by the path is known as

- (A) Biot-Savart's Law
- (C) Ampere's circuital Law
- (B) Gauss's Law of magnetostatic
- (D) Faraday's Law

Test Booklet Series

www.cusatxpress.com

Mean square radius of a uniformly charged sphere of radius R is given by 35.

(A)
$$\frac{1}{3}R^2$$
 (B) $\frac{3}{5}R^2$
(C) R^2 (D) $\frac{4}{3}R^2$

When a diamagnetic substance is brought near north or south pole of a bar 36. magnet, it is

- (A) attracted by the poles
- (B) repelled by the poles
- (C) attracted by north pole and repelled by south pole
- (D) repelled by north pole and attracted by south pole
- 37. A copper rod of length 1 is rotated about the end perpendicular to a uniform magnetic field B with constant angular velocity ω . The induced emf between its ends is:

(A)	$B\omega l^2$	(B)	$\frac{1}{2}B\omega l^2$
(C)	$\frac{1}{2}\frac{B\omega}{1}$		$\frac{B\omega l}{2}$

- A bar magnet is oscillating in earth's magnetic field with period T. What 38. happens to its period and motion if its mass is quadrupled?
 - (A) Motion remains simple harmonic with new period = T/2.
 - (B) Motion remains simple harmonic with new period = 2T.
 - (C) Motion remains simple harmonic with new period = 4T.
 - (D) Motion remains simple harmonic and the period stays nearly constant.
- A 25 W 120 V bulb and 100 W 120 V bulb are connected in series across 39. 120 V line. The bulb burning more brightly will be:
 - (A) 25 W 120 V
 - (B) 100 W 120 V
 - (C) both will have same brightness
 - (D) neither will give any brightness

0.	The difference in frequencies of series limit of Lymen series and Balmer series is equal to the frequency of the first line of the			
	(A)	Lymen series	(B)	Balmer series
		Paschen series	(D)	Brackett series
41.	An elect ground s	tron with kinetic energy 5 eV state. The collision	is inc	ident on a hydrogen atom in its
	(A) (C)	may be completely inelastic may be partially inelastic	(B) (D)	must be completely inelastic must be elastic
42.	In the f	following nuclear reaction ${}_{6}C^{11}$	$\rightarrow_5 B^1$	$^{1}+\beta^{\dagger}+X$. What does X stand
	for?			· · · · · · · · · · · · · · · · · · ·
	(A)	a neutron	(B)	a neutrino 6
	(C)	an electron	(D)	a proton
43.	Mosele	y's Law shows a linear relation	ship be	tween
	(A)	The characteristic X-ray frequ	ency ar	nd the atomic number
	(B)	The characteristic X-ray frequ	ency ar	nd the atomic mass number
	(C)			X-ray frequency and the atomic
	(D)	The square of the characteristinumber	ic X-ray	y frequency and the atomic mass

44. The dimensions of Planck's constant is the same as that of

(A)	Power	(B)	Frequency
(C)	Energy	(D)	Angular momentum

45. If a nucleus ${}^{A}_{z}X$ undergoes β^{-} decay, then the daughter nucleus ${}^{A}_{z_{d}}Y$ will have (A_{d}, Z_{d}) as

(A)	(A, Z)	(B)	(A-1, Z+1)
(C)	(A, Z+1)	A REAL PROPERTY AND A REAL	(A, Z-1)

- 46. Though the value of Planck's constant, h is very small (~ 10^{-34} Js), it is important in all the quantum processes. If we consider this value to be zero, then we are dealing with
 - (A) Quantum Theory of gravitation
 - (B) Relativistic quantum theory
 - (C) Super symmetric theory
 - (D) Classical theory

7

101PC	10	0 d	
		icatyproc	C
	RALL	usacrpics.	
47.	The wave nature of particle ho supp	wetusatxpress.com	
	(A) Oil drop experiment		
	 (A) Oil drop experiment (B) Cathode ray experiment 		
	(C) Electron diffraction experi	iment	
	(D) Compton scattering		
48.	The Nuclei ${}^{0}_{3}O$ and ${}^{0}_{3}F$ are		
	and the second s	(B) Isobars	
	(A) Isotopes		
	(C) Isotones	(D) Mirror Nuclei	
49.	If the half-life of a radioactive eler	ment is T, then the time elapsed for 75% of	
	its initial amount to decay is,		
	(1) T		
	(A) T (C) T/2	(B) 2T	
	(0) 1/2	(D) T/4	
50.	Which of the following is a good m	uclear fuel?	
07	(A) Uranium-236	(B) Plutonium-239	
1	(C) Thorium-236	(D) Uranium-238	
51,	The displacement of a body is not		
	acceleration of the body would be p	portional to cube of the time elapsed. The proportional to	
		and the second	
	(A) square of the time(C) cube of the time	(B) linear in time	
		(D) square root of the time	
52	The velocity of a body moving wi	ith a uniform acceleration 2m/s ² is 15 m/s.	
	What would be its velocity after 5 s	s?	
	(A) 25 m/s		
	(C) 30 m/s	(B) 10 m/s (D) 15 m/s	
53.	A stone is the set		
	with the horizontal. The	a tower with velocity 16m/s at an angle 30°	
	tower approximately would be	a tower with velocity 16m/s at an angle 30° tes 4s to hit the ground. The height of the	
	(A) 55.4 m	m. Itale 200	73
	(C) 66.2 m	(B) 46.4 m	
in st	A bag of sand of man her		
	times smaller than the sand he	to hang from a rope. A bullet of mass 999 fired at it with a velocity of 400	
	outlet gets embedded into the bag 1	to hang from a rope. A bullet of mass 999 fired at it with a velocity of 400 m/s. The What is the recoil velocity of the sand bag?	
2 we have	UNI 0.4 m/s	the recoil velocity of the sand bag?	
	(C) 400 m/s	(B) 40 m/s	
		(D) 0.004 m/s	

6

30

55. He established the law in 1885 which states that the rate of diffusion in any direction is proportional to the concentration gradient of the solute in that direction. Who was he?

(A)	Graham	(B)	Robert Austen
(C)	Hevesy	(D)	Fick

56.

101PC10

(A) equal to that out side (B) greater than that out

In the case of a soap bubble the pressure inside must be

(A) equal to that out side
 (B) greater than that out side
 (C) smaller than that out side
 (D) ¹/₂ of the atmospheric pressure

57. An earth bound satellite has time period of 90 minutes. Assuming the orbit to be circular, the satellite must be at an altitude of

(A)	800 km	(B) 963 km
(C)	3500 km	(D) 272 km

58. The Young's modulus of three different materials A, B, C satisfy the relation Y_A >Y_B and Y_C >Y_A. The most elastic material among the materials A, B, C is

(A)	material B	(B)	material A
(C)	material C	(D)	material A and C

59. As a car starts to move from rest with acceleration 1.4 m/s², another car moving with a constant speed of 12 m/s passes in a parallel lane. At what time span the first car can over take the second car?

(A)	17 s	(B)	20 s
(C)	13.4 s	(D)	12.4 s

60. The critical value of this number decides the transition from the laminar flow to tubular flow of a liquid.

(A)	Mach number	(B)	Bernoulli's number
(C)	Reynolds number		Stokes number

61. The energy required to increase radius of a soap bubble from 1 cm to 2 cm is (The surface tension is 30 dyne/cm):

(A)	240π erg	(B)	720π erg
(C)	480π erg	And	840π erg

62. Eight equal drops of water each of radius r = 2 mm are falling through air with a terminal velocity of 16 cm/s. The eight drops combine to form a big drop. The terminal velocity of big drop is:

	16 m/s	(B)	32 m/s	
C)	64 m/s	(D)	48 m/s	

	CALLUTION TO MILLEY	AX AA A	v.cusa	ILXPLES	S.COIII	1
63.	If intensity of a pressure amplitude	sound wave is inc ude of the wave is	reased nin increased?	e times, the	n by what facto	or the
	(1) 3		(B)	6		
	(A) 3		(D)	$\frac{6}{\sqrt{3}}$		
	(C) 9		(D)	VS		
64.	Two tuning for sounding these intensities will		time interv	al between :	Iz respectively. successive maxin	On num
	1	64		1	2 64	
	(A) $\frac{1}{4}$ s	annun in Toph ge	(B)	$\frac{1}{2}$ S	12	1 XE
	4	1 10 10 17/00	2	2	The second	8/3
	(C) 1 s	1	(D)	2 s	10	1
65.	A body initially The temperatur	y at 80°C cools at 6 re of the surrounding	i4°C in 5 m gs will be:	in and to 52°	°C in the next 5 1	nin.
	(A) 16°C		(B)	8°C		
	(C) 4°C		(D)	12°C		
66.	In a container l The velocity of	naving water filled u f water flowing out o	pto a heigh of the hole v	t h, a hole is will be	made in the botte	om.
	(A) propor	rtional to h	(B)	proportiona	to h ²	
	(C) propor	rtional to h ¹⁴	(D)			
67.	Lissajou's figu will be:	re obtained by com	bining $x = .$	$A\sin\omega t$ and	$y = A\sin\left(\omega t + \frac{2}{4}\right)$	$\left(\frac{\tau}{4}\right)$
	(A) an elli	pse	(B)	a circle		
	(C) a straig	ght line	(D)	a parabola		
68.	A man standin hears a series o m/sec then dist	ng symmetrically b of echoes at interval ance between two c			aps his hands a sound in air is 34	nd 40
	(A) 340m					
A Providence	(C) 680m		(B)	510m		
69			(D)	370		
07	A closed organ in frequency.	n pipe and an open o Their lengths are in 1	organ pipe h ratio:	ave their first	overtone identic	al
	(A) 1:2					
	(C) 3:4		(B)	2:3		
			(D)	4:5		

CLISZ

www.cusatxpress.com

Test Booklet	Series	C
--------------	--------	---

Compressed air coming out of punctured football become cooler because of 70. Joule Thomson effect adiabatic compression (A) (B) energy dissipation (C) isothermal expansion (D) 71. Of the following which one has the highest specific heat? (A) Aluminium Copper (B) (C) Water (D) Hydrogen A bimetallic strip consists of brass and iron. When it is heated it bends into an 72. arc with the brass on the convex and iron on the concave side of the arc. This happens because: (A) density of brass is more than that of the iron brass has higher specific heat capacity than iron (B) (C) brass has higher coefficient of linear expansion than iron (D) None of the above The source and sink temperature of a Carnot engine are 400K and 300K 73. respectively. What is the efficiency? (A) 100% (B) 75% (C) 33.3% (D) 25% 74. By opening the door of a refrigerator which is inside a room for one hour, you can (A) cool the room to a certain degree (B) cool the room to the temperature inside the refrigerator warm the room slightly (C) (D) neither cool nor warm the room 75. In Searle's method for finding conductivity the temperature gradient along the bar is (A) greater near the hot end (B) greater near the cold end (C) the same at all points (D) increases as we go from hot end to the cold end 76. Valence bond theory is unable to account for (A) the para-magnetism of oxygen molecule (B) the ionic character of sodium chloride (C) the covalent character of chlorine molecule (D) the structure of ammonium chloride

11

77.

www.cusatxpress.com Le Chatelier's principle applies (B) to all chemical reactions (A) only to reactions among gases (D) to all physical equilibria (C) to all systems at equilibrium because (A) the ortho-position intra molecular hydrogen bonding exists in para-nitrophenol (B) there is intermolecular hydrogen bonding in para-nitrophenol (C) para-nitrophenol has a higher molecular weight than ortho-(D) nitrophenol $C_6H_5CONH_2 \xrightarrow{P_2O_5} A \xrightarrow{Na/alcohol} B$. Compound B is (A) Benzalaniline (B) Aniline (C) Benzylamine (D) Benzanilide A dilute solution of Na2SO4 is electrolyzed using Pt electrodes. The products 80. at the anode and cathode respectively are (A) O₂ and H₂ (B) S₂O₈²⁻ and Na⁴ (C) O2 and Na⁺ (D) S₂O₈²⁻ and H₂ The total number of ions present in a solution of potassium hexacyanoferrate (A) two (B) three (C) four (D) five 5.36 gram of a metal displaces from an acid 1,120 mL of hydrogen at NTP. lico (1) 200

(n)	20.8	100	
(C)	5.36	(B)	107.2
101		(D)	53.6

The solubility product of AgCl is 1.4×10^{-4} at 373 K. The solubility of AgCl 83.

- (A) 1.18 g-mol/litre
- (C) 1.18×10^{-2} g-mol/litre
- (B) 0.118 g-mol/litre
- (D) 1.18×10^{-4} g-mol/litre

- 78. The boiling point of para-nitrophenol is higher than that of ortho-nitrophenol
 - Nitro group at para position behaves in a different way from that in

Test Booklet Series

79.

- 81.

The carboxylic group in an organic acid can be replaced by hydrogen by

101PC10

heating the acid with

Soda lime

(C)

(A) Zinc and hydrochloric acid

(B) Hydrogen in the presence of nickel

(D) Bromine and concentrated aqueous alkali

84.

85. Glucose is a (an) (A) Aldohexose (B) Aldopentose (C) Ketohexose (D) Ketopentose 86. The temperature at which the vapour pressure of a liquid equal to the atmospheric pressure is (A) boiling point (B) freezing point absolute temperature (D) depression of boiling point (C) An element has two main isotopes of mass numbers 85 and 87. Their 87. abundance are 70% and 30% respectively. The atomic weight of the element is therefore, (A) 86 (B) 85.6 (C) 85.5 (D) 86.5 Given that K_a for HF is 6.8×10^{-4} . The value of K_b for F⁻ is 88. (A) 1.5×10^{-11} (B) 6.8×10^{-4} Cattern (C) 1.0×10^{-14} (D) 6.8×10^{-11} An isomer of ethyl alcohol is 89. (A) Methanol (B) Dimethyl ether (C) Diethyl ether (D) Glycol Vulcanization of rubber is the process in which rubber is heated with 90. (A) peroxide (B) phosphorus (C) sulphur (D) oxygen The half-life period of a radioactive sample is 2 hours. If we start with 1g of 91. the sample at 8 AM, how much of it will remain at 4 PM? (B) 0.25 g (A) 0.5 g (C) 0.125 g (D) 0.0625 g

10110	10		14	typroce
		ECS CL	120	ILXPIESS
92.		per of moles of sucrose ss 342 g/mol)	in 200 mL	of a 0.100 M solution (C ₁₂ H ₂₂ O ₁₁ ,
	21 9	2 mol 0.02 mol	(B) (D)	A Realized of Astronomy and the second se
93.	Amount ethanol is		the comple	ete combustion of two moles of
	(A) (C)	44 g 17.6 g	(B) (D)	88 g 176 g
94.		ducing agent in Clemmer	isen reductio	on is
	(A) (C)	LiAlH ₄ Na/ethanol	(B) (D)	Zn/NaOH Zn-Hg/HCl
95.	The per	centage of nitrogen conter	nt in urea is	and and ker is a sure of the second
	(A) (C)	26 46		
96.	If the p	H of the solution is 5, then	[OH ⁻] will	A A A A A A A A A A A A A A A A A A A
KY	(A) (C)	5 1×10 ⁻⁵	(B) (D)	9` 1×10 ⁻⁹
97.	The s	substance in which Phosphe	orus is in the	+3 oxidation state is
	(A) (C)	Phosphorus acid Ortho phosphoric acid	(B) (D)	Hypophosphorus acid Metalphosphoric acid
98	. A cher	nical reaction is said to be e	equilibrium v	when
	(A) (B) (C) (D)	The reactants are comple The rates of forward read Equal amounts of reactan The formation of the proc	te and mand bac	ckward reaction are equal
99). Lacti	c acid can be obtained by t		
CAP	(A) (C) (CHCHO!	Propylene glycol Acetaldehyde cyanohydi	rin (D)	α- bromopropionic acid None of the above
CH5	CHICKO			

CRADIA.

	(A) ox	idation of protein			
	(B) dis	ssolution of protein			
	(C) hy	drolysis of protein into amin	o acid	s	
	1000	sruption of three dimensional	struc	ture	
	Vhich on aemoglob	e of the following element	s is t	he main metallic co	nstituent of
	(A) A	luminium	(B)	Copper	
	(C) I	ron	(D)	Magnesium	
102.	K3 [A1(C ₂ O ₄) ₃] is known as			
	(A) I	Potassium alumino oxalate			d.
	1.000	Potassium tris(oxalato)alumina	te (III		
		Potassium aluminium(III) oxal		,	
	and the second se	Potassium trioxalato aluminate			
103.	An incre	ase in pressure shifts the positi	on of t	he equilibrium in the o	lirection in
	which				5
	(A)	There is an increase in volume		N shares and	21 *
	(A) (B)	There is a decrease in volume			
	(C)	There is no change in volume			0
	(D)	There is an increase in the num	ber of	molecules	CN
104.		pound A of molecular formu		13H10 on reduction	
	amaiga	m and HCl gives diphenylmetha	ne. He	ence compound A is	
	(A)	Diphenylcarbinol	(B)	Benzophenone	Cons
	(C)	Acetophenone	(D)	Phenyl hexyl ketone	d
105.	Accord	ing to Bronsted concept, acid is			Cha
	(A)	proton acceptor	(B)	proton donor	
	(C)	electron donor	(D)	electron acceptor	P.P. 1
106	Whic	h of the following species has a	pyrami	idal shape?	0

Denaturation of protein is due to

is an increase in the number	er of molecu	ules		C	10
A of molecular formula HCl gives diphenylmethane	C ₁₃ H ₁₀ O e. Hence co	on mpo	reduction ound A is	with	zinc
envlcarhinol	(B) Bang	mha		1	rec.

Correctives CH3 CV45

(A)	proton acceptor	(B)	proton donor
(C)	electron donor	(D)	electron acceptor

IUIPCIU

100.

(A)	PCl ₃	(B)	SO3
(C)	CO3 ²⁻		NO3

- In very dilute hydrochloric acid, the solubility of silver chloride
 - (A) Increases
 - (B) Decreases
 - (C) Remains unchanged
 - (D) Changes only to a negligible extent

Ferric salts give blood red colouration with 108.

- (B) Potassium ferriccyanide (A) Potassium ferricyanide
- (C) Ammonium thiocynate
- (D) Potassium permanganate

www.cusatxpress.com

Test Booklet Series

- Which one of the following compounds does not undergo Cannizzaro 109. reaction?

(A) HCHO	(B) C ₆ H ₅ CHO	
CH ₃		
(C) H ₃ C C CHO	(D) CH ₃ CHO	

110. For strong electrolytes, as dilution increases the equivalent conductance

- (A) increases
- (B) decreases
- (C) remains constant
- (D) may increase or decrease depending on electrolyte
- CsBr crystallizes in a BCC type structure. 111. 4.24gcm⁻³. The probable unit cell length is

The density of CsBr crystal is

Sec. Co.	437 nm 437 μm	Coloma C.	437 pm
(0)	457 µm	(D)	437 mm

112.

Which of the following has zero dipole moment?

	CH ₂ Cl ₂	(B)	BF ₃
(C)	NF ₃		ClO ₂

An organic compound (C₅H₈) on hydrogenation gave C₅H₁₂. The original 113. compound (C_5H_8) on ozonolysis gave formaldehyde and 2-ketopropanal. The

Pentene 1-methyl-1,3-butadiene	(B)	2-methyl-1,3-butadiene
	(D)	none of the above

- 114
- The order of acidity of alcohol, carboxylic acid and phenol is
 - (A) carboxylic acid > alcohol > phenol
 - alcohol > phenol > carboxylic acid (C)
 - carboxylic acid > phenol > alcohol (D)
 - phenol > carboxylic acid > alcohol

- 115. When hydrochloric acid is exactly neutralized by NaOH solution which one of the following groups represents most accurately the ions which are present in the neutral solution?
 - (A) Sodium ions and chloride ions $(Na^+ and Cl^-)$
 - (B) Sodium ions, chloride ions and hydroxide ions (Na⁺, Cl⁻ and OH⁻)
 - (C) Sodium ions, chloride ions and hydrogen ions (Na⁺, Cl⁻ and H⁺)
 - (D) Hydroxyl ions and $H_3O(OH^- \text{ and } H_3O^+)$

116. The value of the equilibrium constant of the following reaction is 10 HA + B \leftrightarrow BH⁺ + A⁻ The value of the forward rate constant is 10⁵. The rate constant for the reverse reaction is

(A)	10	(B) (D)	10^{4}
(C)	10 ⁵	(D)	10^{2}

- 117. The Rate of a reaction is given by Rate K [A] [B]². The concentration of A and B are doubled, then the rate will be
- (A) The same as the original concentration
 - (B) Twice of the original rate
 - (C) Eight times the original rate
 - (D) Six times the original rate

118. Methyl isocyanide on reduction gives

- (A) Methylamine (B) Ethyleamine
- (C) Dimethylamine (D) Trimethylamine

119. Phenol is converted into salicylaldehyde by one of the following reactions

- (A) Riemer-Tiemann reaction (B) Kolbe synthesis
- (C) Kolbe Schmidt reaction (D) Scotten-Baumann reaction
- 120. The ionisation constants of aniline, diethylamine and ammonia are 4.2×10⁻¹⁰, 1.76×10⁻⁵ and 9.6×10⁻⁴ respectively. The increasing order of their base strengths is
 - (A) Aniline < ammonia < diethylamine
 - (B) Aniline < diethylamine < ammonia
 - (C) Ammonia < aniline < diethylamine
 - (D) Ammonia < diethylamine < aniline

		TRA C		satxpress.com	
101PC1	0		8	Test Booklet Series C	
121.	Which	n of the following has the le	ast numbe	r of molecules?	
		11.2 litres of SO ₂ at STP 1×10^{23} molecules	and the second se	1 mol of SO ₂ gas 5.6 litre of SO ₂ at STP	
122.	The De of 2×1	Broglie wavelength of a sto 0^{-2} m s ⁻¹ if 'h' is taken as 6.	one of mas $.6 \times 10^{-34}$	s 10 gram moving with a velocity $s g m^2 s^{-1}$ is	
	(A) (C)	3.3×10^{-30} m 3.3×10^{-28} m	(B) (D)	3.3 m 3.3 nm	
123.	Form	ic acid reacts with ammonia	cal silver r	itrate to form	
	(A) (C)	Metallic silver Formaldehyde	(B) (D)	Silver acetylide Acetaldehyde	
124.					
	(A) (C)	one three	(B) (D)	two four	
125.	The r at 800	atio between the root mean s 0K is	quare velo	city of H_2 at 50 K and that of O_2	
	(A)		(B)	8	
	(C)	1	(D)	$\frac{1}{16}$	
