## MATHEMATICS

1. Arithmetic mean  $\overline{X}$  of a random variable X is equal to

| (A) | $E(X^2)$ | (B) | $E(X^2)-E(X)$       |
|-----|----------|-----|---------------------|
| (C) | E(X)     | (D) | $E(X^2) - (E(X))^2$ |

| (-) | - ( ) |  | (-) | - ( | 1 | - 1 | " |  |
|-----|-------|--|-----|-----|---|-----|---|--|
|     |       |  |     |     |   |     |   |  |
|     |       |  |     |     |   |     |   |  |

A balanced coin is tossed 3 times. A man is paid Rs.5 if he gets all heads or all tails and loses Rs.3 otherwise. Then the expected gain is

| (A) | -2 | (B) | -1 |
|-----|----|-----|----|
| (C) | 2  | (D) | 5  |

2.

4.

3. The random variable X has variance 4 and  $E(X^2) = 8$ . Then the mean of X is

| (A) $2\sqrt{3}$                  | (B) ±2                               |      |
|----------------------------------|--------------------------------------|------|
| (C) 4                            | (D) ±2√2                             |      |
| If the points $(a, a)(a, a)$ and | d(a, a) analogo a triangle of area 1 | 8 60 |

If the points (-a,a),(a,-a) and (a,a) enclose a triangle of area 18 sq. units then the centroid of the triangle is

| (A) $(-8, -8)$ and $(8, 8)$ | (B) $(-3, -3)$ and $(3, 3)$ |
|-----------------------------|-----------------------------|
| (C) $(-2, -2)$ and $(2, 2)$ | (D) $(-1, -1)$ and $(1, 1)$ |
|                             |                             |

5. The sum of the abscissa of all points on the line x + y = 4 that lie a unit distance from the line 4x + 3y = 10 is

| (A) | 2  | (B) | - 1 |
|-----|----|-----|-----|
| (C) | -4 | (D) | - 6 |

6. A section of a sphere by a plane, in general, is

| (A) | a great circle | (B) | a circle   |
|-----|----------------|-----|------------|
| (C) | a cone         | (D) | a cylinder |

7. If  $z = i^i$  (where  $i^2 = -1$ ) then  $z / \overline{z}$  is

8. If  $f: R \to R$  (where R is the set of all real numbers) is defined by  $f(x) = \frac{e^{|x|} - e^{-x}}{e^{-x}} \text{ then } f \text{ is}$ 

$$(x) = \frac{1}{e^x + e^{-x}}$$
 then y

- (A) one-to-one and continuous
- (B) neither one-to-one nor continuous
- (C) one-to-one but not continuous
- (D) not one-to-one but continuous
- 9. Let  $f : \mathbb{R} \to \mathbb{R}$  be such that f(x+y) = f(x) + f(y) for all  $x, y \in \mathbb{R}$  and if f is continuous at x = 0 then f is continuous

| RЛ  | (A) for $x \ge 0$ only<br>(C) on the interval $(-1,1)$ only              | (B) for $x \le 0$ only<br>(D) for all real $x$                                 |
|-----|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 10. | If $f(a)=4$ and $f'(a)=1$ then $\lim_{x\to a}$                           | $\frac{xf(a) - af(x)}{x - a}$ is equal to                                      |
|     | (A) $2-a$<br>(C) $4-a$                                                   | (B) $3-a$<br>(D) $6$                                                           |
| 11. | The value of <i>a</i> for which the function at $x = \pi/6$ is           | $f(x) = a \cos x + \frac{1}{3} \cos 3x$ has an extremum                        |
|     | (A) 1<br>(C) 0                                                           | (B) -1<br>(D) -2                                                               |
| 12. | If $0 < x < \pi$ and $\cos x + \sin x = \frac{1}{2}$ , then .            |                                                                                |
|     | (A) on the line $x = 0$<br>(C) on the line $x = 1$                       | <ul><li>(B) in the second quadrant</li><li>(D) in the first quadrant</li></ul> |
| 13. | If $e^{\sin x} + e^{\cos x} = 2e^{-\frac{1}{\sqrt{2}}}$ then $\tan x$ is |                                                                                |
|     | (A) 1                                                                    | (B) $\sqrt{3}$                                                                 |
|     | (C) $\frac{1}{\sqrt{3}}$                                                 | (D) ∞                                                                          |

14. The domain of the function  $f(x) = \sec^{-1} x + \tan^{-1} x$  is

| (A)        | $(-\infty, -1] \cup [1, \infty)$ | (B) | $(-\infty, 0]$     |
|------------|----------------------------------|-----|--------------------|
| $( \cap )$ | $(-\infty,1)\cup(1,\infty)$      | (D) | $(-\infty,\infty)$ |

15. The number of one-one, onto function from A to B having the same number of elements n, is

| (A) | 0 | (B) | n! |
|-----|---|-----|----|
| (C) | n | (D) | 2n |

16. If  $\vec{a} = 3\vec{i} + 4\vec{j} + 5\vec{k}$  is a non zero vector and *m* is a non-zero scalar, then  $m\vec{a}$  is a unit vector if *m* is equal to



17. One mapping is selected at random from all the mappings from the set  $S = \{1, 2, 3, ..., n\}$  into itself. The probability that the selected mapping is one to one is

(A) 
$$-n!$$
  
(C)  $\frac{n!}{n^n}$ 
(B)  $n!n^{n-1}$   
(D)  $n!n^n$ 

18. If 
$$\theta \in \mathbb{R}$$
; then  $\begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{vmatrix}$  lies in the interval  
(A)  $\begin{bmatrix} -1, 1 \end{bmatrix}$  (B)  $\begin{bmatrix} 0, 1 \end{bmatrix}$ 

 $\begin{array}{c} (A) & [-1, 1] \\ (C) & [-2, 4] \end{array} \qquad (D) & [2, 4] \end{array}$ 

19. The system of equations -4x+3y+z=1; 2x-6y+z=-2 and  $2x+3y+\lambda z=4$  will have no solution if

| (A) | $\lambda = -1$ | (B) | $\lambda = -2$ |
|-----|----------------|-----|----------------|
| (C) | $\lambda = 0$  | (D) | $\lambda = 1$  |



25. If the sum of 7 consecutive natural numbers is 2121, then the middle number is

| 26. | If the d     | istance of the plane $x + \frac{y}{a} + \frac{z}{4} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from t              | the origin is $\frac{4}{\sqrt{21}}$ then the value of                                                      |  |  |  |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
|     | a is         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                                                            |  |  |  |
|     | (A)<br>(C)   | 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)<br>(D)          | 4<br>8                                                                                                     |  |  |  |
| 27. | The equ      | uation of the curve whose subnorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nal is              | twice the abscissa is                                                                                      |  |  |  |
|     | (A)<br>(C)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B)<br>(D)          | a parabola<br>an ellipse                                                                                   |  |  |  |
| 28. | If ω(≠       | 1) is a cube root of unity, then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e value             | e of                                                                                                       |  |  |  |
|     | $(1-\omega)$ | $(1-\omega^2)(1-\omega^4)(1-\omega^5)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)(1-\omega^7)$ | $1-\omega^8$        | $(1-\omega^{10})(1-\omega^{11})$ is                                                                        |  |  |  |
| 29. | 1.52         | 81 - 82<br>= min(x, x <sup>2</sup> ) where x is a real n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B)<br>(D)<br>umber |                                                                                                            |  |  |  |
|     | (B)<br>(C)   | h(x) is increasing<br>h(x) is decreasing<br>h(x) is constant<br>h(x) is neither increasing nor d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ecreas              | <b>ing</b>                                                                                                 |  |  |  |
| 30. |              | C, CD and DA are joined by stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | <i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i> of consecutive sides nes then the quadrilateral <i>PQRS</i> is |  |  |  |
|     | (A)<br>(C)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B)<br>(D)          | parallelogram<br>rhombus                                                                                   |  |  |  |
| 31. | The eq       | uation of the normal at the point (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4, 5) o             | n the ellipse $2x^2 + 5y^2 = 20$ is                                                                        |  |  |  |
|     |              | 25x - 8y = 60 $8x - 25y = 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 25x - 8y = 90 $3x + 2y = 7$                                                                                |  |  |  |

32. If a and b are negative real numbers then |a+b| is

| (A) | a+b | (B) | a-b  |
|-----|-----|-----|------|
| (C) | b-a | (D) | -a-b |

33. The greatest integer  $\leq x$  for any real number x is denoted by [x]. Whenever x is not an integer then the value of [x]+[-x] is

| (A) | 0  | (B) 1  |  |
|-----|----|--------|--|
| (C) | -1 | (D) –2 |  |

34. If  $f(x)=ax^3+bx^2+cx+d$  is a cubic polynomial and has three equal real roots then f'(x) has

|     | <ul><li>(A) distinct roots</li><li>(C) no root at all</li></ul>                                                                                        | <ul><li>(B) only one root</li><li>(D) at least two equal roots</li></ul> |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 35. | If x satisfies $x^4 - 10x^3 + 26x^2 - 10x + 1 =$                                                                                                       | 0 then $x + \frac{1}{x}$ can be                                          |
|     | (A) 1 or 2<br>(C) 4 or 6                                                                                                                               | (B) 2 or 4<br>(D) 6 or 8                                                 |
| 36. | A, B are two square matrices such that $A$                                                                                                             | +B = AB then                                                             |
|     | (A) $I - A$ is invertible<br>(B) neither $I - A$ nor $I - B$ is invertible<br>(C) $I - B$ is invertible<br>(D) both $I - A$ and $I - B$ are invertible |                                                                          |
| 37. | The solutions of the equation $\frac{x}{y} + \frac{y}{x} - \frac{1}{xy}$                                                                               | -=2 are                                                                  |
|     | (A) $(a, a+1), (-a, a+1)$                                                                                                                              | (B) $(a, a-1), (-a, a-1)$                                                |
|     | (C) $(a, a+1), (a, a-1)$                                                                                                                               | (D) $(-a, a+1), (-a, a-1)$                                               |
| 38. | The locus of a complex number $z$ whic                                                                                                                 | h satisfy $\left  \frac{z+3i}{z-3i} \right  = 1$ is                      |
|     | (A) $\operatorname{Re}(z) > 0$                                                                                                                         | (B) $x - axis$                                                           |
|     | (C) $y - axis$                                                                                                                                         | (D) $\operatorname{Re}(z) < 0$                                           |
| 39. | The roots of the equation $x^2 - px + q = 0$                                                                                                           | are $\cot 30^\circ$ and $\cot 15^\circ$ . Then $q - p$ is                |
|     |                                                                                                                                                        |                                                                          |

| (A) | -1 | (B) | 0 |
|-----|----|-----|---|
| (C) | 2  | (D) | 1 |

Suppose  $\begin{vmatrix} 1 & 2\lambda & 3 \\ 2 & 0 & 1 \\ 1 & \lambda & -1 \end{vmatrix}$  + 5  $\begin{vmatrix} \lambda & 3 & 2 \\ 4 & 3 & 2 \\ \lambda & 1 & 0 \end{vmatrix}$  = 0 then  $\lambda$  is equal to 40. (B) 40 (D) -20 (A) -40 (C) 20 If  $\omega \neq 1$  is a cube root of unity then  $\begin{vmatrix} i & i\omega & i\omega^2 \\ -\omega & -\omega^2 & -1 \\ 1 & i & -i \end{vmatrix}$  is equal to 41. (B) *i* (D) 1 (A) ω (C) 0 (D) 1 The graph of the function  $y = \sin x \sin (x-2) - \sin^2 (x-1)$  is (A) a straight line passing through  $(0, -\sin^2 1)$  parallel to x axis (B) a straight line passing through (0,0)a straight line passing through  $(0, -\sin^2 1)$  perpendicular to x axis (C) (D) a parabola with vertex  $(1, -\sin^2 1)$ 43. If  $\sin \alpha$ ,  $\cos \alpha$  are the roots of the equation  $ax^2 + bx + c = 0$ ,  $(c \neq 0)$  then (A)  $(b+c)^2 = a^2 + c^2$ (B)  $(b-c)^2 = a^2 - c^2$ (C)  $(a-c)^2 = b^2 - c^2$ (D)  $(a+c)^2 = b^2 + c^2$ The function  $L(x) = \int_{0}^{x} e^{t} dt + 1$  satisfies the equation 44. (A) L(x-y) = L(x)/L(y)(B) L(xy) = L(x) + L(y)(C)  $L\left(\frac{x}{y}\right) = L(x) + L(y)$ (D) L(x+y) = L(x) + L(y)

7



| (A) | $2^{20} + 3^{20}$ | (B) | $2^{5} + 3^{5}$   |
|-----|-------------------|-----|-------------------|
|     | $2^{7} + 3^{7}$   | (D) | $2^{13} + 3^{13}$ |



5. If A and B are square matrices of the same order, which one of the following true?

| (A) | A+B  =  A  +  B | <b>(</b> B) | $\left(AB\right)^{-1}=A^{-1}B^{-1}$ |
|-----|-----------------|-------------|-------------------------------------|
| (C) | (AB)' = A'B'    | (D)         | AB  =  A  B                         |

56. The least positive integer n such that n! is divisible by 75 is

| (A) | 5  | (B) | 10 |
|-----|----|-----|----|
| (C) | 25 | (D) | 75 |

57. The roots of the equation  $x^2 - cx + c = 0$  ( $c \neq 0$ ) are  $\alpha$  and  $\beta$ . The real value of c for which  $\alpha^2 + \beta^2$  is minimum is given by

| (A) | 1 | (B) 2 |
|-----|---|-------|
| (C) |   | (D) 3 |

58. The number of terms in the expansion of  $\left[ (1+x)^2 (1-x)^2 \right]^2$  is

| (A) | 5 | (B) | 10 |
|-----|---|-----|----|
| (C) |   | (D) |    |

59. A rectangular field is half as wide as it is long and the perimeter of the field is p. The area of the field in terms of p is



- If m, n are two positive integers then (m+n+1)(m-n)+(m+n+2)(m-n-1) is 64.
  - (A) always even
  - (B) even only when m is even and n is odd
  - (C) always odd
  - (D) odd only when m is odd and n is even
- A regular hexagon is inscribed in a circle of diameter 'd'. Then the perimeter of 65. the hexagon is

| (A) | 3d               |  | (B) | 6 <i>d</i> |
|-----|------------------|--|-----|------------|
| (C) | $\frac{3\pi}{d}$ |  | (D) | 2 <i>d</i> |

The derivative w.r.t. x of the product 66.



- (A) 2 (C) 5
- 68. The smallest positive integer *n* for which  $n^2 + n + 17$  is composite is

| (A) | 5  | (B) | 11 |
|-----|----|-----|----|
| (C) | 17 | (D) | 19 |

69. 220 cannot be the sum of first n cubes for a suitable n, because 220 is not

| (A) | an odd number | (B) | a perfect square |
|-----|---------------|-----|------------------|
| (C) | a cube        | (D) | a prime          |

The value of  $\int_{-a}^{a} |x| dx$  is equal to 70.

| (A) | a | (B) | $a^2$      |
|-----|---|-----|------------|
| (C) | 0 | (D) | 2 <i>a</i> |

- The value of the product  $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\dots\left(1-\frac{1}{n}\right)$  is 71. (B)  $\frac{1}{n}$ (A) n (C)  $\frac{2}{n}$ (D)  $\frac{n}{2}$ If the ratio  $\frac{z-i}{z+i}$  is purely imaginary, the point z lies on 72. (A) a circle (B) a parabola (C) a hyperbola (D) an ellipse Which one of the following is true for all positive integers? 73. (B)  $n^n > 2^n$ (D)  $2^n \cdot n! > (n+1)^n$ (A)  $n^n > 2^n . n!$ (C)  $(n+1)^n > 2^n . n!$ 74. Which one of the following equations cannot have any integral solutions?  $(A) \quad 6x + 4y = 91$ (B) 3x + 2y = 6(D) 5x + 7y = 1008x - 10y = 42(C) 75. The probability distribution of X is x 0 1 2 3 4 5 6 p(x) a 2a 3a 4a 5a 6a 7a Then P(X < 6) is (A)  $\frac{3}{4}$ (C)  $\frac{1}{2}$ (B) 1 (D)  $\frac{1}{4}$ The mapping  $f: R_0 \to R_0$  where  $R_0$  is the set of non-zero real numbers, defined by 76.  $f(x) = \frac{1}{x}$ , is
  - (A) one-one onto (B) one-one into
  - (C) many-one into
- (D) many-one onto

CUSAT 2009 – Mathematics | Education Online Desk, Mathrubhumi

12

The function  $f: R \to R$  is defined by  $f(x) = \frac{x}{1-2x}, x \neq \frac{1}{2}$ . Then  $f^{-1}$  is given by 77.

|     | (A) $f^{-1}(x) = \frac{1-2x}{x}, x \neq 0$<br>(C) $f^{-1}(x) = \frac{x}{1-2x}, x \neq \frac{1}{2}$                 | (B) $f^{-1}(x) = \frac{1+2x}{x}, x \neq 0$<br>(D) $f^{-1}(x) = \frac{x}{1+2x}, x \neq \frac{-1}{2}$ |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 78. | If $f(x) = \begin{cases} x \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$ then $\lim_{x \to 0} f(x) = 0$ | f(x) equals                                                                                         |
|     | (A) 1<br>(C) -1                                                                                                    | <ul><li>(B) 0</li><li>(D) none of these</li></ul>                                                   |
| 79. | If $g[f(x)] =  \sin x $ and $f[g(x)] = (\sin x)$                                                                   | $\sqrt{x}^{2}$ , then                                                                               |
|     |                                                                                                                    | (B) $f(x) = \sin x, g(x) =  x $                                                                     |
|     | (C) $f(x) = x^2, g(x) = \sin \sqrt{x}$                                                                             | (D) $f$ and $g$ cannot be determined                                                                |
| 80. | Let $f(x) = \frac{\alpha x}{1+x}$ , $x \neq -1$ . Then for what                                                    | value of $\alpha$ is $f(f(x)) = x$ ?                                                                |
|     | (A) $\sqrt{2}$                                                                                                     | (B) $-\sqrt{2}$<br>(D) $-1$                                                                         |
|     | (C) 1                                                                                                              | (D) – 1                                                                                             |
| 81. | When $ \sin x  +  \cos x  \ge 1$ , x has values                                                                    | between                                                                                             |
|     | (A) $\left[ n\pi - \frac{\pi}{4}, n\pi \right], n \in N$                                                           | (B) all real positive values                                                                        |
|     | (C) $\left[n\pi, n\pi + \frac{\pi}{4}\right], n \in N$                                                             | (D) all real values                                                                                 |
| 82. | For $k \in N$ , $\lim_{n \to \infty} \log_{(n-1)}(n) \cdot \log_n(n+1) \dots$                                      | $\log_{(n^{k}-1)}(n^{k})$ is equal to                                                               |

| (A) | (k - 1) | (B) | k             |
|-----|---------|-----|---------------|
| (C) | k + 1   | (D) | none of these |
|     |         |     |               |

If  $f(x) = \frac{2 - \sqrt{x+4}}{\sin(2x)}$ ,  $x \neq 0$  is continuous at x = 0, then f(0) is equal to 83. (A)  $\frac{l_4}{4}$ (C)  $\frac{l_8}{8}$ (B)  $-\frac{1}{4}$ (D)  $-\frac{1}{8}$ The value of the derivative of |x-1| + |x+3| at x = 2 is 84. (A) -2 (C) 2 **(B)** 0 (D) not defined Let f and g be differentiable functions satisfying 85. g'(a) = 2, g(a) = b and  $f \circ g = I$  (Identity function). Then f'(b) is equal to (A) 2 (B)  $\frac{2}{3}$ (C)  $\frac{1}{2}$  (D) none of these The locus of point z satisfying the condition  $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$  is 86. (B) circle(D) hyperbola (A) straight line (C) parabola 87. The inequality |z-4| < |z-2| represents the region given by (A)  $\operatorname{Re}(z) > 0$ (B)  $\operatorname{Re}(z) < 0$ (D)  $\operatorname{Re}(z) > 3$ (C)  $\operatorname{Re}(z) > 2$ The value of the sum  $\sum_{n=1}^{13} (i^n + i^{n+1})$ ,  $i = \sqrt{-1}$ , equals 88. (A) *i* (B) *i*−1 (D) 0 (C) -*i* If  $2 + i\sqrt{3}$  is a root of the equation  $x^2 + px + q = 0$  where p and q are real, then the 89. values of p and q are (B) (4,7) (A) (4, -7)(C) (7,4) (D) (-4,7)

CUSAT 2009 – Mathematics | Education Online Desk, Mathrubhumi 14

90. If the roots of the equation  $ax^2 + bx + c = 0$  be  $\alpha$  and  $\beta$  then the roots of the equation  $cx^2 + bx + a = 0$  are

(A) 
$$-\alpha, -\beta$$
 (B)  $\alpha, \frac{1}{\beta}$ 

(C) 
$$\frac{1}{\alpha}, \frac{1}{\beta}$$
 (D) none of these

91. If  $f(x) = \cos^2 x + \sec^2 x$ , then

| (A) | f(x) > 1     | (B) | f(x) = 1     |
|-----|--------------|-----|--------------|
| (C) | 2 > f(x) > 1 | (D) | $f(x) \ge 2$ |

92. If  $\tan \theta + \sin \theta = m$  and  $\tan \theta - \sin \theta = n$ , then

2.1

(A) 
$$m^2 - n^2 = 4mn$$
  
(B)  $m^2 + n^2 = 4mn$   
(C)  $m^2 + n^2 = m^2 - n^2$   
(D)  $m^2 - n^2 = 4\sqrt{(mn)}$ 

93.

If  $\tan \alpha = \frac{m}{m+1}$ ,  $\tan \beta = \frac{1}{2m+1}$ , then  $\alpha + \beta$  is equal to

(A) 
$$\frac{\pi}{2}$$
 (B)  $\frac{\pi}{3}$  (D)  $\frac{\pi}{4}$ 

## 94. Which of the following number(s) is/are rational(s)?

| (A) | $\sin(15^{\circ})$                 | (B) | $\cos(15^{\circ})$                 |
|-----|------------------------------------|-----|------------------------------------|
| (C) | $\sin(15^{\circ})\cos(15^{\circ})$ | (D) | $\sin(15^{\circ})\cos(75^{\circ})$ |

 $\left(\frac{1-\sin\theta}{1+\sin\theta}\right)^{\frac{1}{2}}$  is equal to 95.

(A) 0(B) 1(C) 
$$\sec\theta\tan\theta$$
(D)  $\sec\theta-\tan\theta$ 

96. The number of diagonals in a polygon of n sides is

(A) 
$$\frac{n(n-1)}{2}$$
 (B)  $n(n-1)$   
(C)  $\frac{n}{2}(n-3)$  (D)  $\frac{1}{2}n(n-2)$ 

97. The fourth, seventh and tenth terms of a G.P are p,q,r respectively. Then

| (A) | $p^2 = q^2 + r^2$ | (B) | $q^2 = pr$       |
|-----|-------------------|-----|------------------|
| (C) | $p^2 = qr$        | (D) | pqr + pq + 1 = 0 |

98. Sum of the *n* terms of the series  $12 + 16 + 24 + 40 + \dots$  will be

| (A) | $2(2^n-1)+8n$   | (B) | $2(2^n-1)+6n$ |
|-----|-----------------|-----|---------------|
| (C) | $3(2^{n}-1)+8n$ | (D) | $4(2^n-1)+8n$ |

If H is the harmonic mean between P and Q, then  $\frac{H}{P} + \frac{H}{Q}$  is equal to 99.



100

(A) 
$$A.P.$$
 (B)  $G.P.$   
(C)  $H.P.$  (D) none of these

101. If  $\frac{dy}{dx} = \infty$  at a point P on the curve y = f(x), then

- (A) the normal at P to the curve y = f(x) is parallel to x-axis
- (B) the normal at P to the curve y = f(x) is parallel to y-axis
- (C) the tangent at P to the curve y = f(x) is parallel to x-axis
- (D) the tangent at P to the curve y = f(x) is parallel to y-axis

102. The slope of the tangent to the curve  $y = \tan^{-1}(x) + \tan^{-1}(1/x)$  at a general point is

| (A) | $-1/x^{2}$ | (B) | 0 |
|-----|------------|-----|---|
| (C) | 1          | (D) | x |

The curves  $y^2 = x$  and  $x^2 = 4y$  intersect each other at 103.

| (A) | only one point | (B) | two points  |
|-----|----------------|-----|-------------|
| (C) | three points   | (D) | four points |

104. The function  $(1 - \cos x)$  is increasing when x lies in

| (A) | $(-\pi, 0)$    | (B) | $(0,\pi)$    |
|-----|----------------|-----|--------------|
| (C) | $(-\infty, 0)$ | (D) | $(0,\infty)$ |

105. The curve  $(y-5)^2 = 12(x-3)$  is symmetrical about the line

| (A) | x = 0 | (B) | x - 3 = 0 |
|-----|-------|-----|-----------|
| (C) | y = 0 | (D) | y - 5 = 0 |

106. The equation of the ellipse, whose foci are at  $(\pm 4.0)$  and eccentricity is  $\frac{1}{3}$ , is



108. When a complex number is multiplied by (-1), its argument

| (A) | gets decreased by 90° | (B) | gets divided by 90°    |
|-----|-----------------------|-----|------------------------|
| (C) | gets increased by 90° | (D) | gets multiplied by 90° |

109. The least value of *n*, for which  $\left[\left(1+i\right)/\left(1-i\right)\right]^n = 1$ , is

| (A) | 1 | (B) | 2 |
|-----|---|-----|---|
| (C) | 4 | (D) | 6 |

110. If  $\alpha$  and  $\beta$  are the roots of  $x^2 - 2x + 4 = 0$ , then  $\alpha^n + \beta^n$  is

(A) 
$$2^n \cos \frac{2n\pi}{3}$$
 (B)  $2^n \cos \frac{n\pi}{3}$ 

(C) 
$$2^{n+1}\cos\frac{n\pi}{3}$$
 (D)  $2^n\cos\frac{n\pi}{4}$ 

111. Given  $\vec{A}, \vec{B}, \vec{C}$  are three non-zero, non-coplanar vectors and m, n, p are three scalars such that  $m\vec{A} + n\vec{B} + p\vec{C} = 0$ , then

| (A) | m=n=p=0                     | (B) | m+n+p=0    |
|-----|-----------------------------|-----|------------|
| (C) | $\frac{m}{n} = \frac{n}{p}$ | (D) | m + p = 2n |

112. Given  $\vec{a} = \vec{i} + \vec{j} - \vec{k}$ ,  $\vec{b} = -\vec{i} + 2\vec{j} + \vec{k}$  and  $\vec{c} = -\vec{i} + 2\vec{j} - \vec{k}$ , a unit vector perpendicular to both  $\vec{a} + \vec{b}$  and  $\vec{b} + \vec{c}$  is

| (A) | ī | (B) | $\vec{j}$                                  |
|-----|---|-----|--------------------------------------------|
| (C) | ĸ | (D) | $\frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}}$ |

- Any vector can be expressed in terms of 113.
  - any three non-coplanar vectors (A) any three given vectors (B) (D) three coplanar vectors (C) any triad

114. The angle between the planes 4x - 6y + 2z = 3 and 6x + 5y + 3z = 6 is 

(A) 0 (B) 
$$\frac{\pi}{4}$$
 (C)  $\frac{\pi}{3}$  (D)  $\frac{\pi}{2}$ 

115. The area between the curve  $y = x^2$  and the lines x = 0 and y = 4 is

| (A) | $\frac{32}{3}$ | (B) | $\frac{16}{3}$ |
|-----|----------------|-----|----------------|
| (C) | $\frac{8}{3}$  | (D) | $\frac{2}{3}$  |

116.  $y = ae^x - be^{-x}$  is a solution of the differential equation

(A) 
$$y'' = y'$$
  
(B)  $y'' + y' + y = 0$   
(C)  $y'' - y = 0$   
(D)  $y'' - aby = 0$ 

117. The differential equation of all circles, which pass through the origin and whose centres are on the x – axis, is

| (A) | $x^2 + y^2 + 2gx + c = 0$ | (B) | $y^2 - x^2 + 2xyy' = 0$  |
|-----|---------------------------|-----|--------------------------|
| (C) | $y^2 - x^2 - 2xyy' = 0$   | (D) | $-y^2 + x^2 - 2xyy' = 0$ |

118. The differential equation formed by eliminating a and b from  $y = (a + bx)e^{-x}$  is

| (A) | $y_2 + 2y_1 + y = 0$  | (B) | $y_2 - 2y_1 + y = 0$ |
|-----|-----------------------|-----|----------------------|
| (C) | $y_2 + 2y_1 + 2y = 0$ | (D) | $y_2 - 2y_1 = 0$     |

119. With respect to multiplication, the set  $\{0, 1, -1\}$  does NOT form a group, since it fails to satisfy

| 6.   | 1 | associativity         |     | closure              |  |
|------|---|-----------------------|-----|----------------------|--|
| - (0 | ) | existence of identity | (D) | existence of inverse |  |
|      |   |                       |     |                      |  |

- 120. Which of the following is true?
  - (A) Division is a binary operation in Z
  - (B) Division is a binary operation in N
  - (C) <u>Division is a binary operation in  $R \{0\}$ </u>
  - (D) Division is a binary operation in R

121. In the group  $\{(1,-1,i,-i),\times\}$  the order of the element -i, is

| (A) | 8 | (B) | 2 |
|-----|---|-----|---|
| (C) | 4 | (D) | 6 |

122. If  $\omega = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$  and  $G = \{1, \omega, \omega^2, ..., \omega^n\}$ , then G with multiplication as a binary operation is

| (A) | a monoid     | (B) | a non abelian group |
|-----|--------------|-----|---------------------|
| (C) | a semi group | (D) | an abelian group    |

123. Given  $f_1(x) = x$ ,  $f_2(x) = -x$ ,  $f_3(x) = \frac{1}{x}$  and  $f_4(x) = -\frac{1}{x}$  and  $\circ$  stands for composition of function, then  $(f_4 \circ f_2)(x)$  is

| (A) | $f_1(x)$ | (B) | $f_2(x)$ |
|-----|----------|-----|----------|
| (C) | $f_3(x)$ | (D) | $f_4(x)$ |

124. Which statement is true, given H is a sub group of G?

| (A) $a, b \in H$ need not imp                    | $ly \ a * b^{-1} \in H$        |
|--------------------------------------------------|--------------------------------|
| (B) Identity element of H                        | is not same as that of G       |
| (C) Identity element of $H$                      | need not belong to G           |
| (D) Inverse of $a \in H$ is sa                   | me as the inverse of $a \in G$ |
| 125. $G = \{8^n \mid n \in Z\}$ is cyclic. The g |                                |
| (A) 2 and $\frac{1}{2}$                          | (B) 4 and $\frac{1}{4}$        |
| (C) 6 and $\frac{1}{6}$                          | (D) 8 and $\frac{1}{8}$        |

\*\*\*\*