MATHEMATICS

1. The number of roots of $z^3 + \overline{z} = 0$ is

A. 2 C. 4

B. 3

D. 5

If z_1 and $z_2 \neq 0$ are the complex numbers such that $\left| \frac{z_1 - z_2}{z_1 + z_2} \right| = 1$, then 2.

 $A. \quad z_2 = kz_1, k \in R$

B. $z_2 = i k z_1, k \in R$

 $C. z_1 = z_2$

D. None of these.

If z is a point in the argand plane satisfying |z-a|-|z-b|=c<|a-b|, where a, b, c are fixed real numbers, then the locus of z is a

parabola

D. line- segment .

If z_1 and z_2 are two non – zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then 4. $arg(z_1) - arg(z_2)$ is equal to

C.

D. 0

If $1, \omega, \omega^2, ..., \omega^{n-1}$ are the n^{th} roots of unity, then $(2-\omega)(2-\omega^2)...(2-\omega^{n-1})$ equals 5.

A. 2"-1

C. 2"+1-1

- B. $2^{n} + 1$ D. ${}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n-1} + 1$
- Suppose three real numbers a, b, c are in geometric progression. Let $z = \frac{a+ib}{c-ib}$ then 6.

- Let α, β, γ are three real numbers such that $\alpha^2 + \beta^2 + \gamma^2 \gamma = 0$ and $z = \frac{\alpha + i\beta}{1 \gamma}$. Then $|z|^2$ equals

- The centre of the circle $\left| \frac{z-1}{z+1} \right| = 2$ is
 - A. $\frac{5}{3} + 0i$ C. 1 + 2i

- If ω is an imaginary cube root of unity, x = a + b, $y = a\omega + b\omega^2$ and $z = a\omega^2 + b\omega$, then

- 10. The polar form of the complex number 1-i is

- 11. If a, b, c are distinct rational numbers, then the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ are
 - A. irrational

B. rational

C. equal

- imaginary.
- The number of real roots of $|x|^2 + 5|x| 6 = 0$ is 12.

- Out of the letters of the word CALCUTTA, different words are formed. They are
 - A. 8!

B. 5040

C. 72

- If the equations $ax^2 + bx + c = 0$ and $x^2 + 2x + 2 = 0$ has a common root, then a:b:c = 014.
 - A. 2:1:1

B. 1:2:2 D. 1:1:1

C. 2:1:2

- The number of real roots of the equation $(\sqrt{2}+1)^x + (\sqrt{2}-1)^x = 1$ is 15.
 - A. I

- The range of the function f(x) = |x-1| + |x-2| + |x-3| is
 - A. [3,∞)

B. [2,∞]

C. [2,∞)

- D. [1,∞)
- 17. If $x^{11} + x + 1$ is divided by $x^2 + x + 1$ the remainder is

- If the point (3, 4) is rotated in the coordinate plane about origin through an angle coordinates of the new point is
 - A. (-4, 3)

B. (4, 3)

- The real values of x satisfying $x^2 + 6|x| 16 < 0$ is given by 19.
 - A. -8 < x < 2C. -2 < x < 8

- B. -8 < x < 8D. -2 < x < 2
- 20. If a^2 , b^2 , c^2 are in A.P., then b+c, c+a, a+b are in
 - A. H.P.

B. G.P.

C. A.P.

- D. None of these.
- A vector \vec{c} , directed along the internal bisector of the angle between the vectors $\vec{a} + 7\hat{i} - 4\hat{j} - 4\hat{k}, \vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\vec{c}| = 5\sqrt{6}$, is
 - A. $\frac{5}{3}(\hat{i}-7\hat{j}+2\hat{k})$

- C. $\frac{5}{3}(\hat{i}-7\hat{j}+2\hat{k})$
- B. $\frac{5}{3} (5\hat{i} 5\hat{j} + 2\hat{k})$ D. $\frac{5}{3} (-5\hat{i} + 5\hat{j} + 2\hat{k})$

- The vector $\hat{i} \times (\bar{a} \times \hat{i}) + \hat{j} \times (\bar{a} \times \hat{j}) + \hat{k} \times (\bar{a} \times \hat{k})$ is equal to 22.

C. 2ä

- D. None of these.
- $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) =$ 23.

B. $2(\vec{a} \times \vec{b} \cdot \vec{c})$

C. $\vec{a} + \vec{b} + \vec{c}$

- D. 0
- If $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$, then
 - A. \vec{a} is parallel to \vec{b}
- B. \vec{a} is perpendicular to \vec{b}

C. $|\vec{a}| = \vec{0}$

- D. None of these.
- 25. A unit vector perpendicular to the plane of the vectors $-\hat{i} + \hat{j} + \hat{k}$, and $\hat{i} \hat{j} + \hat{k}$

- 26.

- B. 4D. None of these.
- The vectors $\vec{a} = x\hat{i} 2\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} + y\hat{j} z\hat{k}$ are collinear if (x, y, z) is
 - A. (1, -2, -5)

B. $\left(\frac{1}{2}, -4, -10\right)$

C. $\left(-\frac{1}{2}, 4, 10\right)$

- D. None of these.
- The volume of the parallelopiped whose sides are given by $\overrightarrow{OA} = 2\hat{i} - 3\hat{j}$, $\overrightarrow{OB} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{OC} = 3\hat{i} - \hat{k}$ is

B. 4

- A vector orthogonal to the vectors (1,-1,1) and (2,3,5) in \mathbb{R}^3 is
 - A. (8, -3, 5)

B. (-8, 3, 5)

C. (8, 3, -5)

- The domain of the function $f(x) = \sqrt{2x-1} + \sqrt{3-2x}$

- 31. Let $f(x) = \frac{x [x]}{1 + x [x]}$, $x \in R$, then the range of f is

C. $\left[0,\frac{1}{2}\right]$

- D. (0, 1)
- If $f(x) = \sin^{-1}(\sin x)$, then f is periodic with period

C. $\frac{\pi}{4}$

- D. 2π
- The range of the function $f(x) = 2\sin^{-1} x + 3\cos^{-1} x$ is
 - A. $[\pi, 2\pi]$

C. $\left(\pi, \frac{3\pi}{2}\right)$

- D. None of these.
- Which of the following is a function?
 - $\Lambda. \quad \left\{ (x,y) \colon y^2 = 4ax, \, x,y \in R \right\}$
- B. $\{(x, y): y = |x|, x, y \in R\}$
- C. $\{(x, y): x^2 + y^2 = 1, x, y \in R\}$
- B. $\{(x, y): y = [x], ..., y \in R\}$ D. $\{(x, y): x^2 y^2 = 1, x, y \in R\}$

- 35. Which of the following function is not invertible
 - A. $f: R \rightarrow R$, f(x) = 4x + 5
- B. $f: R \to R^+ \cup \{0\}, f(x) = 2x^2$
- C. $f: R^+ \to R^+, f(x) = \frac{1}{x^2}$
- D. None of these.
- If $f:[0,\infty) \to [0,\infty)$, and $f(x) = \frac{x}{1+x}$ then the function f is
- B. One-one but not onto
- A. One-one and ontoC. Onto but not one-one
- D. Neither one-one nor onto.

- $\lim_{x \to 0} \frac{x-2}{|x-2|}$ equals
- - A. $\frac{3}{2}$ C. $\frac{2}{3}$ D. None of these.
 - 39. Let $f(x) = \begin{cases} x+1 & \text{if } x \le 1 \\ 3-ax^2 & \text{if } x < 1 \end{cases}$. The value of a for which f(x) is continuous is
 - A. 1 C. -1

- The number of points at which the function $f(x) = \frac{1}{\log |x|}$ is discontinuous is

- 41. For $x \in R$, $\lim_{x \to \infty} \left(\frac{x-3}{x+2} \right)^x$ is equal to

A. *e* C. *e*⁻⁵

D. e5

- 42. The function $f(x) = [\cos x] = \text{integral part of } \cos x \text{ is continuous at}$
 - A. At $x = \frac{\pi}{2}$

C. $x = \frac{3\pi}{2}$

- D. None of these.
- $\lim_{x \to \infty} x \sin \frac{1}{x}$ equals to
 - A. 1 C. -1

- B. 0
- The set of all points where the function f(x) = |x| is differentiable is 44.

B. $(-\infty,0)\cup(0,\infty)$

- D. [0, ∞)
- If f(2) = 4 and f'(2) = 1, then $\lim_{x \to 2} \frac{xf(2) 2f(x)}{x 2}$:

- D. None of these.
- Let f(x+y) = f(x) f(y), for all x and y. If f(5) = 2 and f'(0) = 3, f'(5) is equal to 47.
 - A. 5 C. 0

- D. None of these.
- 48. The tangent to the curve $y = x^3$ parallel to the chord joining the points (0, 0) and (1, 1)has the point of contact
 - A. (1, 1)

C. $\left(\frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}\right)$

- $f(x) = xe^{x(1-x)}$, then f(x) is 49.
 - A. increasing on $\left[-\frac{1}{2}, 1\right]$
- B. decreasing on R
- C. increasing on R
- If $f(x) = \int e^{x} (x-1)(x-4) dx$, then f decreases in the interval 50.
 - A. (-∞,-4)

B. (-4, -1)

C. (1, 4)

- D. (4,+∞)
- The function $f(x) = x^2 e^{-2x}, x > 0$. Then the maximum value of f(x) is

- D. None of these.
- If the line ax + by + c = 0 is a normal to the curve xy = 2, then 52.
 - A. a < 0, b > 0

C. a < 0. b < 0

- D. None of these
- If $x^3 y^3 = 72$, then $\frac{dy}{dx}$ at (2, 3) is given by
 - $-\frac{9 + \log 729}{4 + \log 64}$

 $4 + \log 64$

 $-\frac{3+\log 9}{2+\log 8}$

- If $f(x) = \log_e(\log_e x)$, then f'(e) is equal to 54.
 - A. e^{-1} C. 1

B. ε

D. 0

55. If the function f defined by
$$f(x) = \begin{cases} 2x+1 & \text{if } x \le 1 \\ ax^2 + bx & \text{if } x > 1 \end{cases}$$
 is derivable at every x, then

A.
$$a = 0, b = 2$$

C.
$$a = 4, b = -1$$

B.
$$a = 3, b = 0$$

D.
$$a = -1, b = 4$$

$$56. \qquad \int \frac{dx}{x^3 - x} =$$

A.
$$\log_e \frac{\sqrt{x^2 - 1}}{|x|}$$
 B. $\log_e \frac{\sqrt{x^2 - x}}{|x|}$

C.
$$\log_e \frac{x^2 - 1}{|x|}$$

B.
$$\log_e \frac{\sqrt{x^2 - x}}{|x|}$$

57.
$$\int e^x (\cos x + \sin x) dx =$$

A.
$$e^{x}(\sin x - \cos x)$$

C. $-e^{x}\sin x$

A. $e^{x} \left(\sin x - \cos x \right)$ C. $-e^{x} \sin x$ $\int_{0}^{\pi} \frac{e^{\cos x}}{e^{\cos x} + e^{-\cos x}} =$

A.
$$\frac{\pi}{C}$$
 OUCA B. $\frac{\pi}{2}$ OD. 0

59. If
$$f(x) = \begin{cases} e^{\cos x} \sin x & \text{for } |x| \le 2\\ 2 & \text{otherwise} \end{cases}$$

then
$$\int_{-2}^{4} f(x) dx =$$

60. If
$$I = \int_{0}^{1.7} \left[x^2 \right] dx$$
, then *I* equals

A.
$$2.4 + \sqrt{2}$$

C.
$$2.4 + \frac{1}{\sqrt{2}}$$

B.
$$2.4 - \sqrt{2}$$

B.
$$2.4 - \sqrt{2}$$

D. $2.4 - \frac{1}{\sqrt{2}}$

61. If
$$I = \int_{-2}^{2} |1 - x^4| dx$$
, then *I* equals

62. The degree of the differential equation satisfying
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
 is

A.
$$y^2 + xy_1^2 - yy_1 = 0$$

B.
$$xyy_2 + xy_1^2 - yy_1 = 0$$

C.
$$yy_2 + xy_1^2 - xy_1 = 0$$

C.
$$yy_2 + xy_1^2 - xy_1 = 0$$
 D. Non

64. A particular solution of $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, $y(0) = 0$ is

A.
$$e^{3x} + 3e^{-4x} = 4$$

C. $3e^{3x} + 4e^{4x} = 7$

B.
$$4e^{3x} - 3e^{-4x} = 3$$

D. $4e^{3x} + 3e^{-4x} = 7$

$$= 7 D. 4e^{3x} + 3e^{-4y} =$$

65. The orthogonal trajectories of the families of curve
$$y = cx^k$$
 are given by

A.
$$x^2 + cy^2 = \text{constant}$$

B.
$$x^2 + ky^2 = \text{constant}$$

D. $x^2 - ky^2 = \text{constant}$

C.
$$kx^2 + y^2 = \text{constant}$$

D.
$$x^2 - ky^2 = \text{constan}$$

66. The curve
$$\frac{dy}{dx} = \frac{\left(1+y^2\right)}{\left(1+x^2\right)}$$
, $x = 0$, $y = 1$ represents

67. Which one of the following is not a solution of the equation
$$\left(\frac{dy}{dx}\right)^2 + x\frac{dy}{dx} - y = 0$$

A.
$$x^2 + 4y = 0$$

B.
$$y = x +$$

C.
$$y + x = 1$$

D.
$$y^2 - 4x + 0$$

- The solution of the differential equation $\frac{d^2s}{dt^2} = g$, where g is a constant, s = 0 and $\frac{ds}{dt} = u$, when t = 0, is given by
 - $A. \quad s = gt$

B. $s = ut + \frac{1}{2}gt^2$

C. $s = \frac{gt^2}{2}$

- D. None of these
- The degree of the differential equation $\sqrt[3]{y+x\left(\frac{dy}{dx}\right)^2} = \frac{d^2y}{dx^2}$ is 69.
 - A. not defined C. 2

- D. 3
- - A. A C. 0

- D. None of these.
- The inverse of a skew symmetric matrix (if it exists) is 71.
 - A. a symmetric matrix

- If $A(\theta) = \begin{pmatrix} 1 & \tan \theta \\ -\tan \theta & 1 \end{pmatrix}$ and AB = I, then $(\cos^2 \theta)B$ is equal to
 - A. $A(\theta)$

B. $A(-\theta)$

C. $A\left(\frac{\theta}{2}\right)$

- $D. \quad A\bigg(-\frac{\theta}{2}\bigg)$
- 73. If A and B are two invertible matrices of the same order, then adj (AB) is equal to
 - $A. adj(B) \cdot adj(A)$

B. adj(A)-adj(B)

C. $|B||A|A^{-1}B^{-1}$

- D. None of these.
- The system of linear equations x + y + z = 2, 2x + y z = 3, 3x + 2y + kz = 4 has a unique 74. solution if

B. -1 < k < 1

A. $k \neq 0$ C. -2 < k < 2

D. k = 0

- The matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \end{bmatrix}$ satisfies the equation
 - A. $x^3 7x^2 + 22x + 16 = 0$ C. $x^3 + 7x^2 + 22x + 16 = 0$

- 76. If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, then the matrix A^4 is

199 435

- 199 435
- - A. 6 and 4 C. 1 and 2

- B. 3 and 2
- In an election, candidate A has 0.4 chance of winning. B has 0.3 chance, C has 0.2 chance and D has 0.1 chance. Just before the election C withdraws. Then the chances of winning of A, B and D are respectively
 - A. 0.45, 0.35, 0.15
- B. 0.35, 0.6, 0.3
- C. 0.5, 0.375, 0.125
- D. None of these.
- If m is a natural number such that $m \le 5$, then the probability that the quadratic equation $x^2 + mx + \frac{1}{2} + \frac{m}{2} = 0$ has real roots is

- 80. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that two white and one black ball will be drawn is
 - A. $\frac{13}{32}$
 - C. $\frac{32}{32}$

- B. $\frac{1}{4}$
- D. $\frac{3}{16}$
- 81. There are two balls in an urn whose colours are not known (each ball can be either white or black). A white ball is put into the urn. A ball is drawn from the urn. The probability that it is white is
 - A. $\frac{1}{4}$ C. $\frac{2}{3}$ D. $\frac{1}{6}$
- 82. From an urn containing a white and b black balls, k(< a, b) balls are drawn and laid aside, their colour unnoted. Then one more ball is drawn. Find probability that it is white.
 - $A. \frac{a}{a+b}$

B. $\frac{b}{a+b}$

 $C. \quad \frac{a}{a+b-1}$

- D. None of these.
- 83. The probability that a doctor diagnoses a disease correctly is 80%. The probability that a patient dies after correct diagnosis is 40% and the probability that he dies after wrong diagnosis is 70%. The patient died. The chance that the disease was correctly diagnosed in
 - A. $\frac{1}{14}$

B. $\frac{16}{23}$

C. $\frac{4}{15}$

- 84. A bag contains 10 identical white balls, 10 identical black balls and 10 identical red balls. Nine balls are drawn at random from the bag and are put into a box. The probability that the box contains 3 balls of each colour is
 - A. $\frac{3!}{10!}$

B. $\frac{3^3}{10^3}$

C. $\frac{\left({}^{10}C_{3}\right)^{\frac{1}{3}}}{{}^{30}C_{9}}$

- D. $\frac{1}{55}$
- 85. The number tan15" is
 - A. an integer
 - C. an irrational number
- B. a rational number but not an integer
- D. Not a real number
- 86. The period of $\sin n\theta$ is
 - A. $\frac{2\pi}{n}$
 - C. $\frac{\pi}{2n}$

- B. $\frac{\pi}{n}$
- D. None of these.

- 87. If $0 < x < 2\pi$, then
 - A. $\sin x < x$
 - C. $\tan x > x$

- B. $\sin x > x$
- D. None of these.
- 88. $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} =$
 - A. $\frac{1}{2}$
 - C. $\frac{1}{6}$

- В.
- D. $\frac{1}{8}$
- 89. In a triangle ABC, the maximum value of $\cos A + \cos B + \cos C =$
 - A. $\frac{3\sqrt{3}}{2}$
 - C 3

- B. $\frac{3}{2}$
- D. None of these.

- 90. In a triangle $a^2 = bc$, $b^2 = ca$ and $c^2 = ab$, then tan A + tan B =
 - A. $\frac{2}{\sqrt{3}}$

B. $\frac{2}{3}$

C. 2

- D. $2\sqrt{3}$
- 91. $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 =$
 - A. 0

B. $-\frac{\pi}{2}$

C. π

- D. 2π
- 92. If $\tan A = \frac{a}{a+1}$ and $\tan B = \frac{1}{2a+1}$, then $\tan (A+B) =$
- A. 0

 C. $\frac{\pi}{3}$ D. $\frac{\pi}{4}$
- 93. If $m \neq n$, then $\int_{-\infty}^{\pi} \cos mx \cos nx \, dx$ is
 - .. 0

3. $\frac{\pi}{2}$

C. 7

- D. 2π
- 94. If A and B are independent events, then $P(A \cap B)$ is
 - A. P(A) + P(B)

B. P(A)P(B)

C. P(A/B)

- D. P(B/A)
- 95. If a, b, c are in HP, 0 < a,b,c < 1 and $x = a + a^2 + ..., y = b + b^2 + ..., z = c + c^2 + ...$ Then x, y, z are in
 - A. AP

B. GP

C. HP

- D. None of these.
- 96. The points (1, 2), (3, 4), (5, 7) are vertices of a
 - A. acute-angled triangle
- B. obtuse-angled triangle
- C. right-angled triangle
- D. None of these.

If the points (x_i, y_i) , i = 1, 2, 3 are vertices of a triangle with area 12, then the area of the

$$\left(\frac{(x_2+x_3)}{2}, \frac{(y_2+y_3)}{2}\right), \left(\frac{(x_1+x_3)}{2}, \frac{(y_1+y_3)}{2}\right) \text{ and } \left(\frac{(x_2+x_1)}{2}, \frac{(y_2+y_1)}{2}\right) \text{ is }$$

A. 4 C. 12

B. 6 D. 3

- Tangents at two points A and B on a parabola $(x-2y)^2 = 4(2x+y)+2$ meet in a point 98. P. If the line AB passes through its focus, P lies on the

- B. directrix
- tangent at the vertex
- D. None of these.
- 99. If a variable circle touches two fixed circles externally. Then the locus of the centre of the variable circle is a

- the value of c is

- The number of common tangents to the circles $(x-1)^2 + (y-2)^2 = 9$ and 101 $(x-2)^2 + (y-5)^2 = 1$ is

B. 4

- D. 2
- 102. Let P be a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci F_1 and F_2 . If A is the area of the triangle PF₁F₂, then the maximum value of A is ...
 - A. 2abc

B. 2ab

abc

- D. None of these.
- The equation x y = 4 and $x^2 + 4xy + y^2 = 0$ represent the sides of
 - A. an equilateral triangle
- B. a right angled triangle
- C. an isosceles triangle
- D. None of these.

- 104. The equation $ax^2 + 2xy + by^2 + by^2 + 2ax + 2by = 0$ represents a pair of straight lines if
 - A. $a \neq 0$ C. $a+b\neq 2$

- D. a+b=2
- 105. The focus of the parabola $(y-1)^2 = 12(x-2)$ is
 - A. (2, 1) C. (5, 1)

- B. (1, -1) D. (3, 0)
- 106. The directrix of the parabola $y^2 + 4x + 3 = 0$ is

- 107. A normal to the parabola $y^2 = 4ax$ with a slope m touches the rectangular hyperbola
 - A. $m^6 + 4m^4 3m^2 1 = 0$
- B. $m^6 4m^4 + 3m^2 1 = 0$
- C. $m^6 + 4m^4 + 3m^2 + 1 = 0$
- D. $m^6 4m^4 3m^2 + 1 = 0$
- 108. The equation of a tangent to the hyperbola $3x^2 y^2 = 3$, parallel to the line y = 2x + 4 is
 - A. y = 2x + 3

 $B. \quad y = 2x + 1$

C. y = 2x - 10

- D. v = 2x + 2
- 109. For the ellipse $\frac{x^2}{5} + \frac{y^2}{4} = 1, x = \sqrt{5}$ is
 - A. a directrixC. minor axis

B. a lotus rectum

- D. tangent at an end of major axis.
- 110. The radius of the circle having centre at (4, 5) and passing through the centre of $x^2 + y^2 + 4x - 6y = 12$ is
 - A. $2\sqrt{2}$

B. $2\sqrt{17}$

C. $2\sqrt{10}$

- 111. A point P moves so that the sum of the squares of its distances from n fixed points is given. The locus of P
 - A. is a straight line

B. is a circle

C. depends on n

- D. None of these.
- 112. The length of the tangent from (5, 1) to the circle $x^2 + y^2 + 6x 4y 3 = 0$ is
 - A. 81 C. 7

- B. 29 D. 21
- 113. A line makes equal angle θ with x and y axes. If θ is acute, the minimum and maximum values of θ are (in 3-dimensional space)

- In 3 dimensional space, the equation $y^2 + z^2 = 0$ represents
 - A. origin

B. y - z plane

C. x - axis

- D. None of these.
- The foot of the perpendicular from (0, 2, 3) to the line $\frac{x+3}{5}$
 - A. (-2,3,4)

B. (2,-1,3)

C. (2,3,-1)

- D. (3,2,-1)
- 116. If L: $\frac{x+1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ is a line and P: x-2y-z=0 be a plane, then
- B. L is perpendicular to P
- A. L is parallel to PC. L lies in the plane P
- D. None of these.
- 117. If $\omega \neq 1$ is a cube root of unity and $(\omega + x)^n = 1 + 12\omega + 69\omega^2 + ...$ the values of n and x are respectively
 - A. 36, 1

B. 12, 2

C. $24, \frac{1}{2}$

D. $18, \frac{1}{3}$

118.	The lines $\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-2}{7}$ and $\frac{x-1}{4} = \frac{y}{4}$	$\frac{-2}{5} = \frac{z-3}{7}$ are
	A. parallel C. skew	B. intersecting D. perpendicular
119.	The radius of the circle given by the equation	ns $x^2 + y^2 + z^2 = 9$ and $x + y + z = 3$ is
	A. $\sqrt{3}$ C. 3	B. √6 D. 6
120.	The remainder when 2 ²⁰⁰³ is divided by 17	7 is
	A. 1 C. 8	B. 2D. None of these.
121.	The co-efficient of x^7 in the expansion of	
IV	A. 28- C450	B. 360 D280
122.	If every element of a group G is its own inve	rse then G is
	A. finite C. cyclic	B. infinite D. abelian
123.	Let G denote the set of all $n \times n$ non-sing entries $(n \ge 2)$ then under multiplication	gular matrices with rational numbers as
	A. G is a subgroupC. G is infinite non – abelian group	B. G is a finite abelian groupD. G is infinite abelian group
124.	In a group $(G, *)$ for some a of $G, a^2 = e$	where e is the identity element then
	A. $a = \sqrt{e}$	B. $a = a^{-1}$
	C. $a=e$	D. None of these.
125.	The set of fourth roots of unity forms a group	p of order

B. 4 under multiplicationD. None of these.

A. 4 under additionC. 4 under division