

Reg.	No	.:	***************************************
Nam	e :		

FIRST YEAR HIGHER SECONDARY EXAMINATION, MARCH - 2024

Part - III

Time: 2 Hours

PHYSICS

Cool-off time: 15 Minutes

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- · Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- · Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്യ സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൃൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൃൾ ഓഫ് ടൈം' ചോദൃങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

	-	en e		12						
Answer any	3	questions	from	1	to	7.	Each	carries	1	score.

 $(5 \times 1 = 5)$

1. The dimensional formula for gravitational constant

(a) MLT-2

(b) ML²T⁻²

(c) $M^{-1}L^3T^{-2}$

(d) $M^{-1}L^2T^{-2}$

The moment of inertia of a disc about an axis passing through the centre and perpendicular to its plane.

(a) MR²

(b) $\frac{1}{2} MR^2$

(c) $\frac{2}{3} MR^2$

(d) $\frac{2}{5}$ MR²

3. The excess pressure inside a soap bubble is

(a) 0

(b) $\frac{S}{R}$

(c) $\frac{2S}{R}$

(d) $\frac{4S}{R}$

 "The heat given to a system is used to increase the internal energy and doing external work". This is

- (a) Zeroth law in thermodynamics
- (b) First law in thermodynamics
- (c) Second law in thermodynamics
- (d) Newton's third law in motion

According to kinetic theory of gases "The collision between gas molecules are elastic".
The statement is

True/False

6. The condition for simple harmonic motion is _____.

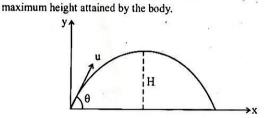
7. What are beats?

Answer any 5 questions from 8 to 14. Each carries 2 scores.

 $(5\times 2=10)$

- 8. Write two uses of dimensional analysis.
- 9. State the number of significant figures in (i) 6.320 J (ii) 2370 g cm⁻³.

10.	Der	ive the relation $v = u + at$.	
11.	Def	ine power, write its unit and dimension.	
12.	Exp	olain anomalous behaviour of water related to thermal expansion.	
13.	Sta	e Newton's law of cooling.	
14.	Wr	ite the C_v and C_p values of one mole of diatomic gas.	
	An	swer any 6 questions from 15 to 21. Each carries 3 scores.	$(6\times3=18)$
15.	Sta	e and explain parallelogram law of vector addition.	(0.12.33)
16.	Sta	te Newton's 2^{nd} law of motion and show $F = ma$.	
17.	Sta	te Kepler's laws of planetary motion.	
18.	Exp	olain Young's modulus, write its unit.	
19.	Exp	plain the working of a hydraulic lift.	
20.	Wri and	te the expression for kinetic energy and potential energy of a boodraw their variations in a graph.	dy executing SHM
21.	Exp afte	lain the speed of longitudinal wave and write the value of speed r Laplace correction.	d of sound at 0 °C
	Ans	wer any 3 questions from 22 to 25. Each carries 4 scores.	$(3\times 4=12)$
22.	(a)	State work-energy theorem.	(2)
	(b)	What is a collision? Explain its different types.	(2)
23.	(a)	State and explain :	*
		(i) Torque	
		(ii) Angular momentum	$(1\frac{1}{2} + 1\frac{1}{2} = 3)$
	(b)	Write the relation between torque and angular momentum.	(1)
EV	424		(1)
FY-	424	4	
			1 · 1


What do you mean by escape speed? 24. (a) (1)

(3)

(2)

(2)

- Derive the expression for escape speed of a body from the earth. **(b)**
- What are isothermal and adiabatic process? 25. (a) (2)
- Derive the expression for work done in an isothermal process. (b) (2)
 - Answer any 3 questions from 26 to 29. Each carries 5 scores. $(3 \times 5 = 15)$
- Draw velocity-time graph for uniformly accelerated motion. 26 (a) (1)
 - Write the significance of v-t graph. (b) (2) Derive the equation $s = ut + \frac{1}{2}at^2$ from the *v-t* graph. (c)
- (a) Figure shows the path of a projectile motion of a body. Derive the expression for 27.

- A ball is thrown at a speed of 28 ms⁻¹ in a direction 30° from the horizontal range. (b) Calculate its horizontal range. (2)
- (c) At what angle of projection is the horizontal range maximum? (1)
- State and prove the law of conservation of linear momentum. 28. (a) (2)
 - What is friction? Mention its different types. (b) (2)
 - At equilibrium the net force acting on a body is (c) (1)
- What is stream line flow? 29. (a) (1)
 - State Bernoulli's principle. (b) (2)
 - What is viscous force and explain coefficient of viscosity. (c) (2)