SSLC EXAMINATION , MARCH- 2024

MATHEMATICS - ANSWER KEY		S1931	
$\begin{aligned} & \text { Qn } \\ & \text { no. } \end{aligned}$	Key		
Each questions from 1 to 4 carries 2 scores.			
1	a) P is inside the circle. b) Q is outside the circle.	1 1	2
2	$\begin{aligned} & 12.0,12.5,12.6,12.9,13.4,13.7,14.1 \\ & \text { Median }=12.9 \end{aligned}$	1	2
3	a) $4,8,12, . \quad$. b) 4	1	2
4	$\frac{5 \times 2}{5 \times 5}=\frac{10}{25}=\frac{2}{5}$	2	2
Each questions from 5 to 10 carries 3 scores.			
5	For drawing tha axes and marking the points. Perpendicular distance $=3$	2 1	3
6	a) $x+10$ b) $x^{2}+10 x=144$ Age of Renuka = 8 , Age of Ajay = 18	1 1 1	3
7	For drawing the rectangle By extend the length by breadth and drawing the semicircle. For completing the square.	1 1 1	3
8	Slope of the line joining the points $(3,5)$ and $(6,7)=\frac{2}{3}$ Slope of the line joining the points $(6,7)$ and $(9,9)=\frac{2}{3}$ Since the slopes are equal , $(3,5),(6,7)$ and $(9,9)$ are on the same line . OR $(3,5),(3+3,5+2),(3+6,5+4)$ Since the change in y coordinates is proportional to the chane in \mathbf{x} coordinates , $(3,5),(6,7)$ and $(9,9)$ are on the same line .	1 1 1 1 2 1	3

	OR $\begin{aligned} & d_{1}=\sqrt{(6-3)^{2}+(7-5)^{2}}=\sqrt{13} \\ & d_{2}=\sqrt{(9-6)^{2}+(9-7)^{2}}=\sqrt{13} \\ & d_{3}=\sqrt{(9-3)^{2}+(9-5)^{2}}=\sqrt{52} \\ & d_{3}=d_{1}+d_{2} \end{aligned}$		
9	a) 4 b) 5 c) 1	1 1 1	3
10	a) $360^{0}-\left(110^{0}+100^{\circ}\right)=150^{0}$ $\text { b) } \begin{aligned} \angle A & =180^{\circ}-100^{\circ}=80^{\circ}, \angle B=180^{\circ}-110^{\circ}=70^{\circ}, \\ \angle B & =180^{\circ}-150^{\circ}=30^{\circ} \end{aligned}$	1 2	3
	Each questions from 11 to 21 carries 4 scores.		
11	a) $\frac{12}{50}=\frac{6}{25}$ b) $\frac{8}{50}=\frac{4}{25}$ c) $\frac{4}{50}=\frac{2}{25}$	1 1 1 2	4
12	a) 2 b) Drawing a circle of radius 2.5 cm and mark a point 6 cm away from the centre of the circle. For drawing the perpendicular bisector of this distance . For drawing the tangents .	1 1 1 1	4
13	a) No (Each term of this sequence leaves remainder 2 on division by the common difference) b) 144 leaves remainder $\mathbf{0}$ on division by the common difference. c) Perfect squares do not leave remainder 2 on division by 6 . OR Adding 2 to the multiples of 6 are not perfect squares . OR Multiples of 6 are also multiples of $\mathbf{3}$. Perfect squares do not leave remainder 2 on division by 6 .	1 1 2	4

14	a) Coordinates of $\mathbf{P}=\left(\frac{2+8}{2}, \frac{3+5}{2}\right)=(5,4)$ Coordinates of $\mathbf{Q}=\left(\frac{8+4}{2}, \frac{5+7}{2}\right)=(6,6)$ b) $P Q=\sqrt{5}$	1 1 2	4
15	a) Slant height $=15 \mathrm{~cm}$ b) Base radius $=\frac{120}{360} \times 15=5 \mathrm{~cm}$ b) Curved surface area $=\pi \times 5 \times 15=75 \pi$ sq.cm	2	4
16	$\begin{aligned} & Q R=9 \times \sin 49^{0}=9 \times 0.75=6.75 \mathrm{~cm} \\ & P Q=9 \times \cos 49^{\circ}=9 \times 0.66=5.94 \mathrm{~cm} \end{aligned}$	2	4
17	a) Coordinates of $D=(-4,0)$ b) $B G=2 \sqrt{3} \mathrm{~cm}$ c) Coordinates of $\mathbf{B}=(2,2 \sqrt{3})$ Coordinates of $E=(-2,-2 \sqrt{3})$	1	4
18	If the number is taken as $=x \quad, \quad x^{2}=x+12$ $\begin{aligned} & (x-4)(x+3)=0 \\ & x=4 \quad \text { OR } \quad x=-3 \end{aligned}$ OR $\begin{aligned} & x^{2}=x+12 \\ & x=\frac{1 \pm \sqrt{49}}{2} \\ & x=4 \quad \text { OR } \quad x=-3 \end{aligned}$	1 1 2 1 1 2 1	4
19	a) If $x^{2}-5 x+6=(x-a)(x-b)$ $\begin{aligned} & a=2 \quad, \quad b=3 \\ & x^{2}-5 x+6=(x-2)(x-3) \end{aligned}$ b) Solutions $=2,3$ OR Any other correct method	2 1 1	4
20	a) $5: 3$ b) $25: 9$ c) $36 \mathrm{sq} . \mathrm{cm}$	1 1 2	4

21	$\begin{aligned} & \angle A D P=\frac{110^{\circ}}{2}=55^{\circ} \\ & \angle P A D=\frac{80^{\circ}}{2}=40^{\circ} \\ & \angle A P D=180^{\circ}-\left(55^{\circ}+40^{\circ}\right)=85^{\circ} \end{aligned}$	1 1 2	4
	Each questions from 22 to 29 carries 5 scores.		
22	For drawing the triangle in the given measures . For drawing the bisectors of the angles . For drawing the incircle. For measuring the radius of the circle . (1.6 cm)	1 1 2 1	5
23	For drawing the frequency table . a) Median $=$ Age of the $17^{\text {th }}$ worker $d=\frac{40-30}{10}=1$ Age of the $10^{\text {th }}$ worker $=\frac{30+31}{2}=30.5$ b) Median age $=30.5+7 \times 1=37.5$	1 1 1 1 1 1	5
24	a) For recognising the angles of the smaller triangles are $45^{\circ}, 45^{\circ}$ and 90° b) Height of the tower $=100 \mathrm{~m}$ c) For recognising the angles of the larger triangles are $\mathbf{9 0}^{\mathbf{0}}, \mathbf{2 5} \mathbf{5}^{\mathbf{0}}, \mathbf{6 5}^{\mathbf{0}}$ $\begin{aligned} & \text { Distance of the car from the tower }=100 \times \tan 65^{\circ}=214 \mathrm{~m} \\ & \qquad O R=\frac{100}{\tan 25^{\circ}} \mathrm{m} \end{aligned}$	1 1 1 1 1	5
25	a) $d=\frac{61-26}{8-3}=7$ b) $f=26-2 \times 7=12$	1 1	

	c) $7 n+5$ d) $15 \times 61=915$	2 1	5
26	a) $a=\frac{80}{4}=20 \mathrm{~cm}$ Lateral surface area $=2 \times 20 \times 26=1040$ sq. cm b) $h=\sqrt{26^{2}-10^{2}}=24 \mathrm{~cm}$ $\begin{aligned} \text { Volume of the vessel } & =\frac{1}{3} \times 20^{2} \times 24=3200 \text { cubic. } \mathrm{cm} . \\ & =\frac{3200}{1000}=3.2 \text { litres } \end{aligned}$	1 1 2 1 1	5
27	a) 55° b) $\mathbf{9 0}{ }^{\circ}$ c) 125° d) $360^{0}-\left(55^{0}+125^{0}+125^{0}\right)=55^{0}$ OR For recognising $A B D C$ is an isosceles trapezium and $\angle A B D=55^{\circ}$	1 1 1 1 1	5
28	a) $2 \times 3-4-2=6-6=0$ b) $y=0,2 x-0-2=0$ Coordinates of the points where the line cuts the x axis $=(1,0)$ $x=0,2 \times 0-y-2=0$ Coordinates of the points where the line cuts the y axis $=(0,-2)$	1 1 1 1 1	5
29	a) Second term $=6$, Third term $=12$ b) $2,4,8,16, . .$. c) 4 d) 81	1 1 1 1 1 1	5

