SSLC EXAMINATION , MARCH- 2024

	MATHEMATICS - ANSWER KEY	S19	931
Qn no.	Key	Score	
	Each questions from 1 to 4 carries 2 scores.		
1	a) P is inside the circle.	1	
	b) Q is outside the circle.	1	2
2	12.0 , 12.5 , 12.6 , 12.9 , 13.4 , 13.7 , 14.1	1	
	Median = 12.9	1	2
3	a) 4 , 8 , 12 ,	1	
	b) 4	1	2
4	$\frac{5\times2}{5\times5} = \frac{10}{25} = \frac{2}{5}$	2	2
	Each questions from 5 to 10 carries 3 scores.		
5	For drawing tha axes and marking the points.	2	
	Perpendicular distance = 3	1	3
6	a) $x + 10$	1	
	b) $x^2 + 10x = 144$	1	3
	Age of Renuka = 8 , Age of Ajay = 18	1	3
7	For drawing the rectangle	1	
	By extend the length by breadth and drawing the semicircle.	1	3
	For completing the square.	1	
8	Slope of the line joining the points (3,5) and (6,7) = $\frac{2}{3}$	1	
	Slope of the line joining the points (6,7) and (9,9) = $\frac{2}{3}$	1	
	Since the slopes are equal, (3,5), (6,7) and (9,9) are on the same line.	1	3
	OR		
	(3,5), (3+3,5+2), (3+6,5+4)	2	
	Since the change in y coordinates is proportional to the chane in x co-	1	
	ordinates , (3,5) , (6,7) and (9,9) are on the same line .		

	OR		
	$d_1 = \sqrt{(6-3)^2 + (7-5)^2} = \sqrt{13}$		
	$d_2 = \sqrt{(9-6)^2 + (9-7)^2} = \sqrt{13}$		
	$d_3 = \sqrt{(9-3)^2 + (9-5)^2} = \sqrt{52}$		
	$d_3 = d_1 + d_2$		
9	a) 4	1	
	b) 5	1	3
	c) 1	1	3
10	a) $360^{\circ} - (110^{\circ} + 100^{\circ}) = 150^{\circ}$	1	
	b) $\angle A = 180^{\circ} - 100^{\circ} = 80^{\circ}$, $\angle B = 180^{\circ} - 110^{\circ} = 70^{\circ}$,		
	$\angle B = 180^{\circ} - 150^{\circ} = 30^{\circ}$	2	3
	Each questions from 11 to 21 carries 4 scores.		
11	a) $\frac{12}{50} = \frac{6}{25}$	1	
		1	_
	b) $\frac{8}{50} = \frac{4}{25}$	1	4
	c) $\frac{4}{50} = \frac{2}{25}$	2	
12	a) 2	1	
	b) Drawing a circle of radius 2.5 cm and mark a point 6 cm away from	1	
	the centre of the circle.	1	4
	For drawing the perpendicular bisector of this distance .	1	
	For drawing the tangents .	1	
13	a) No (Each term of this sequence leaves remainder 2 on division by	1	
	the common difference)		
	b) 144 leaves remainder 0 on division by the common difference .	1	
	c) Perfect squares do not leave remainder 2 on division by 6.		4
	OR	2	
	Adding 2 to the multiples of 6 are not perfect squares.		
	OR Multiples of 6 are also multiples of 3. Perfect squares do not leave		
	remainder 2 on division by 6.		

14	a) Coordinates of P = $(\frac{2+8}{2}, \frac{3+5}{2}) = (5, 4)$	1	4
	Coordinates of Q = $(\frac{8+4}{2}, \frac{5+7}{2}) = (6, 6)$	1	
	b) $PQ = \sqrt{5}$	2	
15	a) Slant height = 15 cm	1	
	b) Base radius $=\frac{120}{360} \times 15 = 5 \ cm$	2	4
	b) Curved surface area = $\pi \times 5 \times 15 = 75 \pi \text{ sq.cm}$	1	7
16	$QR = 9 \times \sin 49^0 = 9 \times 0.75 = 6.75 \ cm$	2	4
	$PQ = 9 \times \cos 49^{\circ} = 9 \times 0.66 = 5.94 \ cm$	2	4
17	a) Coordinates of $D = (-4, 0)$	1	
	$\mathbf{b)} \ BG = 2\sqrt{3} \ cm$	1	
	c) Coordinates of B = $(2, 2\sqrt{3})$	1	
	Coordinates of E = $(-2, -2\sqrt{3})$	1	4
18	If the number is taken as $= x$, $x^2 = x + 12$	1	
	(x-4)(x+3)=0	1	4
	x = 4 OR $x = -3$	2	
	OR		
	$x^2 = x + 12$	1	
	$x = \frac{1 \pm \sqrt{49}}{2}$	2	
	x = 4 OR x = -3	_	
		1	
19	a) If $x^2 - 5x + 6 = (x - a)(x - b)$		
	a=2, $b=3$	2	1
	$x^{2} - 5x + 6 = (x - 2)(x - 3)$	1	4
	b) Solutions = 2, 3 OR	1	
	Any other correct method		
20	a) 5:3	1	
	b) 25:9	1	4
	c) 36 sq.cm	2	

$\angle ADP = \frac{110^{0}}{2} = 55^{0}$	
80°	
$\angle PAD = \frac{80^{\circ}}{2} = 40^{\circ}$	4
$\angle APD = 180^{\circ} - (55^{\circ} + 40^{\circ}) = 85^{\circ}$	
Each questions from 22 to 29 carries 5 scores.	
22 For drawing the triangle in the given measures . 1	
For drawing the bisectors of the angles .	5
For drawing the incircle.	
For measuring the radius of the circle . (1.6 cm)	
23 For drawing the frequency table . 1	
a) Median = Age of the 17 th worker	
$d = \frac{40 - 30}{10} = 1$	
Age of the 10 th worker $=\frac{30+31}{2}=30.5$	5
b) Median age = $30.5 + 7 \times 1 = 37.5$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
For recognising the angles of the smaller triangles are 45°, 45° and 90° 1	
b) Height of the tower = 100 m	5
c) For recognising the angles of the larger triangles are 90°, 25°, 65°	
Distance of the car from the tower = $100 \times \tan 65^{\circ} = 214 \text{ m}$	
$OR = \frac{100}{m}$	
$OR = \frac{100}{\tan 25^0} m$	
$\frac{OR}{\tan 25^0} = \frac{1}{\tan 25^0}$ 25 a) $d = \frac{61 - 26}{8 - 3} = 7$	

	c) $7n + 5$	2	_
	d) $15 \times 61 = 915$	1	5
26	a) $a = \frac{80}{4} = 20 \ cm$	1	
	Lateral surface area = $2 \times 20 \times 26 = 1040 \text{ sq.cm}$	1	
	$h = \sqrt{26^2 - 10^2} = 24 \ cm$	2	5
	Volume of the vessel = $\frac{1}{3} \times 20^2 \times 24 = 3200$ cubic.cm.	1	_
	$= \frac{3200}{1000} = 3.2 \ litres$	1	
27	a) 55°	1	
	b) 90°	1	
	c) 125°	1	5
	d) $360^{\circ} - (55^{\circ} + 125^{\circ} + 125^{\circ}) = 55^{\circ}$	1	
	OR .		
	For recognising ABDC is an isosceles trapezium and $\angle ABD = 55^{\circ}$	1	
28	a) $2 \times 3 - 4 - 2 = 6 - 6 = 0$	1	
	b) $y = 0$, $2x - 0 - 2 = 0$	1	
	Coordinates of the points where the line cuts the x axis $= (1, 0)$	1	5
	$x = 0$, $2 \times 0 - y - 2 = 0$	1	
	Coordinates of the points where the line cuts the y axis $= (0, -2)$	1	
29	a) Second term = 6 , Third term = 12	1	
	b) 2 , 4 , 8 , 16 ,	1	
		1	5
	c) 4		
	d) 81	1	
	d) 81	1	