-		
Qn	No.	1

Chapter Name: Gas laws and Mole concept

Qn.

The volume of a fixed mass of gas at 300K is 10L.What will be the volume of the gas, if the temperature is doubled without changing the pressure.

Hint.

Volume and temperature are directly proportional. Therefore volume changes to 20L / Volume doubled .

Marks :(2)

Hide Answer

Qn No. 2 Chapter Name:Gas laws and Mol		s laws and Mole concept
Qn.		
The relation showing the volume and temperature Volume V(L)	e of fixed mass of gas at constant pressure is tabulated I Temperature T(K)	v / T
600	300	2
800	(a)	2

450

i) Find out the values of a and b.

ii)State the gas law associated with this.

.....(b)

iii) Write down any one instance from daily life related with this law.

Hint.

i) a = 400, b = 900

ii) At constant pressure, the volume of a definite mass of a gas is directly preportional to the temperature in kelvin scale.

iii) Writes suitable situations.

Marks :(4)

2

Hide Answer

Qn No. 3

Chapter Name: Gas laws and Mole concept

Qn.

a) What happens to the size of a gas bubble rising from the bottom of a water body?why?

b)Which is the gas law assosiated with this?

Hint.

a)size increases

As the bubbles move from bottom to top in a water body, pressure decreases and correspondingly the volume increases.

b)Boyle's law

Hide Answer

Qn No. 4	Chapter Name:Gas laws and Mole concept
Qn. The volume of a fixed mass of gas at 2 atm pressure is 20L.What will be its volume it changing the temperature.	f the pressure is increased 4 times without
Hint. PV = a constant	
2 x20 = 40	
8 x X = 40	
X = 40 / 8 =5	
Volume changes to 5 L.	
	Marks :(2)
Hide Answer	

Qn No. 5 Chapter Name: Gas laws and Mole concept

Qn.

The data of an experiment conducted on a fixed mass of gas at constant temperature are given

Pressure P(atm)	Volume V(L)	PV
1	10	(a)
2	(b)	10
(c)	2.5	10

i)Complete the table and find out the speciality of PV.

ii)What is the relation between pressure and volume?

iii) Which gas law can be proved by this experiment?

Hint.

i) a = 10,b = 5L, c = 4 atm, PV ia a constant

ii)Volume and pressure are inversely propotional.

iii)Boyle's law

Marks :(4)

Hide Answer

Qn. What happenens to the following when the temperature of a gas in a closed container is increased ? a) Kinetic energy b)Pressure	
Hint. a) Kinetic energy increases <i>b)</i> Pressure increases	Marks :(2)
Hide Answer	

Qn No. 7	Chapter Name:Gas laws and Mole concept	
Qn. When a gas contained in a 2L cylinder is completely transferred to a 4L cylinder,the	e volume of the gas will be	
Hint. 4L	Marks :(1)	
Hide Answer		

Qn No. 8 C	Chapter Name:Gas laws and Mole concept
 Qn. Select the statements suitable to gases from those given below. a) Intermolecular distance is very low. b)The volume of gas depends on the volume of the container in which it is occupied. c)The energy of gaseous molecules is very high. d)The attractive force between gaseous molecules is very high. 	
Hint. b)The volume of gas depends on the volume of the container in which it is occupied c / The energy of gaseous molecules is very high. Hide Answer	Marks :(2)

Qn No. 9

Chapter Name:Gas laws and Mole concept

Qn. a) How many moles are there in 140g Nitrogen?.

b) How many atoms are there in 140g Nitrogen? (Atomic mass : N- 14)	
Hint. (a) 5 (b) 10	Marks :(2)
Hide Answer	

Qn No. 10	Chapter Name:Gas laws and Mole concept	
Qn. Find out the molecular mass of the following compounds (Atomic Mass : Ca - 40 , N- 14 , C - 12 , O -16 , H- 1) a) Ca(NO ₃) ₂ b) C ₁₂ H ₂₂ O ₁₁		
Hint. a = 164, b = 342 Hide Answer	Marks :(2)	

Qn No. 11

Chapter Name: Gas laws and Mole concept

Qn. $N_2 \textbf{+} \textbf{3} \textbf{H}_2 \textbf{\rightarrow} \textbf{2NH}_3$

The ratio of reactants and products in the above reaction is 1:3:2 .Complete the table related with this reaction.

	Chemical reaction		
_	Reactants		Products
	N ₂	H ₂	NH ₃
Moles	(a)	6	4
Molecules	4 x 6.022 x10 ²³	(b)	8 x 6.022 x10 ²³
Volume at			44.01
STP	(c)	69.2 L	44.8 L
Mass	140 g	30 g	(d)

a) 2

b) 12 x6.022 x10²³

c) 22.4 L

d) 170 g

Hide Answei	ſ
-------------	---

Qn No. 12	Chapter Name:Gas laws and Mole concept
Qn.	
NaOH + HCI \rightarrow NaCI + H ₂ O a) How many moles of NaOH is needed to completely react with 1 mole of HCI ?	
b) How many grams of HCI is required to completely neutralise 160g NaOH ?	
Hint. a) 1	
b) 146 g	
	Marks :(3)
Hide Answer	
Qn No. 13	Chapter Name:Gas laws and Mole concept
Qn.	
Analyse the following equation and answer the questions	
$2Na + Cl_2 \rightarrow 2NaCl$	
a) What is the ratio of reactant molecules and product molecules?b)How many moles of NaCI will be obtained on reaction of 10 moles of chlorine ?	
c) Find the mass of sodium required to get so much amount of NaCI .	
Hint. a) 2:1:2	
b)20mole	
c) 20x 23 = 460g	
	Marks :(3)
Hide Answer	
Qn No. 14	Chapter Name:Gas laws and Mole concept
Qn.	
(a) molecules	
(b) volume	
180 g H O	
180 g H O at STP	

ii) How many grams of H_2O is required to get 5 x 6.022 x 10^{23}	³ molecules ?
Hint.	
i)	
a) 10 x 6.022 x 10 ²³	
b) 224 L	
c) 10 GMM	
ii)	
90 g H ₂ O	
	Marks :(4)
Hide Answer	
Qn No. 15	Chapter Name:Gas laws and Mole concept

Qn.

Which of the following have the same number of moles ?

 $[4 \text{ GMM H}_2\,,\,88 \text{ g CO}_2\,,\,89.6 \text{ L O}_2\,,\,4 \text{ g He}]$

Hint.

4 GMM $\rm H_2$, 89.6 L $\rm O_2$

Hide Answer

 Qn No. 16
 Chapter Name: Gas laws and Mole concept

 Qn.
 Which one contains 2 x 6.022 x10²³ Molecules ?

 (28 g N₂, 2 g H₂, 32 g O₂, 44.8 L CO₂)
 Marks :(1)

 Hint.44.8 L CO₂
 Marks :(1)

 Hide Answer
 Marks :(1)

Qn No. 17

Chapter Name: Gas laws and Mole concept

Marks :(1)

Qn.

Which one is used as the basis of atomic mass now a days?

(H-1 , C-12 , C-14 , O – 16)

Hint. C-12

Hide	Answer
------	--------

ſ

Qn No. 18	Chapter Name:Gas laws and Mole concept
Qn.	
4 x 6.022 x 10 ²³ Chlorine molecules at STP are taken. Answer the following	
questions(Atomic mass : Chlorine = 35.5)	
a) What is its volume at STP ?	
b) What is the mass of this compound?	
c) $H_2 + CI_2 \rightarrow 2HCI$	
How many molecules of hydrogen are required to completely react with 4 x6	5.022x10 ²³ molecules of chlorine ?
Hint.	
a) 89.6 L	
b) 284 g	
c) 4 x 6.022x10 ²³	
	Marks :(3)
Hide Answer	
Qn No. 19	Chapter Name:Gas laws and Mole concept

	Chapter Name. Gas laws and mole concept
Qn. Volume of 2 x 6.022x10 ²³ molecules of a gas at STP is	
Hint. 2 x 22.4L = 44.8 L	Marks :(1)
Hide Answer	

Qn No. 20	Chapter Name:Gas laws and Mole concept
Qn. Mass of ¼ x 6.022x10 ²³ Oxygen molecule is (Hint : Oxygen- Molecular mass = 32)	
Hint. 8 g	Marks :(1)

Qn No. 21	In No. 21			Chapter Name:Gas laws and Mole conce
n. Complete the ta	able.			
Substance	Volume at STP	Number of moles	Mass(g)	
CO ₂	44.8 L	2	88	
CH₄	(a)	(b)	4 g	
NH ₃	11.2 L	(c)	(d)	
lint : MM : CO	9 ₂ = 18 , CH ₄ = 16 , NH	₃ = 17)		
int.) 1/4 x 22.4 = 5) ¼ or 0.25	.6 L			
) ½				
) 8.5 g				
				Marks :(
ide Answer				
				Chapter Name:Gas laws and Mole conce
ide Answer In No. 22 In. $_2$ + 3 H $_2$ \rightarrow 2 N	H ₃			Chapter Name:Gas laws and Mole conce

Hint. 6 mole hydrogen

•

Hide Answer

 Qn No. 23
 Chapter Name: Gas laws and Mole concept

 Qn.
 360 g glucose $[C_6H_{12}O_6]$ is given.

 a) How many molecules are there in the sample ?
 b) What is the total number of atoms in the sample? (Hints: Molecular mass $C_6H_{12}O_6 = 180$)

 Hint.
 a) GMM of $C_6H_{12}O_6 = 180$ g

 Number of moles in 360g glucose = 360g / 180 g = 2

Marks :(1)

Number of mo	olecules = 2	2 x 6.0	22x10 ²³
--------------	--------------	---------	---------------------

•

b) Total number of atoms = $2 \times 6.022 \times 10^{23} \times 24$

(1 molecule of glucose($\rm C_6H_{12}O_6)$ contains 24 atoms)

Marks :(2)

Hide Answer

Qn No. 24	Chapter Name:Gas laws and Mole concept
Qn. Which of the samples given below contains 1mole Oxygen atoms ?	
(Atomic mass O = 16)	
a. 16 g Oxygen .	
b. 8g Oxygen.	
c . 32 g Oxygen.	
d . 22.4 L oxygen at STP	
Hint.	
a. 16 g Oxygen.	Marks :(1)
	Warks .(T
Hide Answer	
Qn No. 25	Chapter Name:Gas laws and Mole concep
Qn. Some samples are given	
(P) 22.4 L NH ₃ (Q) 22 g CO ₂ (R) 64 g SO ₂ (S) 117 g NaCl	
(GMM:NH ₃ = 17 g , CO ₂ = 44 g (c) SO ₂ = 64 g (d) NaCl = 58.5 g)	
a) Which among the above are having the same moles?	
b) How many molecules are there in sample Q?	
c) How many grams of NH_3 are needed to get the same number of molecules	in sample S ?
Hint.	
a) P, R b) 22 g CO ₂ is_0.5 mole, Numer of molecules = ½ x 6.022x10 ²³	
(c) 117 g NaCl= 2mole = 2 x 6.022×10^{23} molecules	
Mass of 2 mole $NH_3 = 2 \times 17 \text{ g} = 34 \text{ g}$	
1000 m 10000 m 100000 m 100000	Marks :(4
	indi AS . (1
Hide Answer	

Qn No. 26	Chapter Name:Gas laws and Mole concept	
Qn. Which among the following samples have the same number of molecules.		
a) 88 g CO ₂ b) 54 g H ₂ O c) 4 g H ₂ d) 17 g NH ₃		
(Atomic mass : C = 12 , O = 16 , H = 1 ,N =14)		
Hint.a, c	Marks :(2)	
Hide Answer		

Qn No. 27	Chapter Name:Gas laws and Mole concept
Qn.	
The equation showing the reaction of Zinc with hydrochloric acid is given.	
$Zn + 2HCI \rightarrow ZnCl_2 + H_2$	
a) How many molecules of $ZnCl_2$ will formed on complete reaction of 65g Zn with	
HCI?	
b) What will be the volume of $\rm H_2$ formed at STP when 6.5g Zn reacts with HCI.	
(Hint:Atomic mass : Zn = 65 , Cl = 35.5 , H= 1)	
Hint. a) 6.022x10 ²³ (1 മോൾ - ½ സ്കോർ)	
b) 0.1 x 22.4 ലിറ്റർ = 2.24 ലിറ്റർ	
	Marks :(3)
Hide Answer	

Qn No. 28

Chapter Name:Gas laws and Mole concept

Qn.

```
\rm 2Mg + O_2 \rightarrow 2MgO
```

The equation showing the burning of Magnesium is given. suppose 120g of Mg is burned.

a) How many atoms are there in 120g Mg ?

b) How much will be the volume of oxygen at STP to burn this much Mg?

c) What will be the mass of Magnesium Oxide formed ?

(Hint : Atomic mass : O = 16, Mg = 24)

Hint.

a) (120/24) x 6.022x10²³ = 5 x 6.022x10²³

.

b) 5/2 x 6.022x10²³

c) 5 x (24+16) = 5 x 40 g = 200g

Qn No. 29

Chapter Name: Gas laws and Mole concept

Qn.

Match the following.

Α	В	С
10 g H ₂	3 x 6.022x10 ²³	2 mol atoms
54 g H ₂ O	2 GAM	112 L at STP
32 g O ₂	5 x 6.022x10 ²³	3 GMM

Hint.

A	В	С
10 g H ₂	5 x 6.022x10 ²³	112 L at STP
54 g H ₂ O	3 x 6.022x10 ²³	3 GMM
32 g O ₂	2 GAM	2 mol Atoms

Marks :(3)

Hide Answer

Qn No. 30	Chapter Name:Gas laws and Mole concept
Qn. H ₂ + Cl ₂ \rightarrow 2HCl	
The above experiment is carried out by using 10g $\rm H_2$ and 142g $\rm Cl_{2}$	
a) How many molecules are there in 142g of Cl _{2.}	
b) what is the volume of each of the above gaes at STP?	
c) How many molecules of HCI will be formed in the reaction ?	
(Hint : Atomic mass : H = 1 , Cl = 35.5)	
Hint. a) 2 x 6.022x10 ²³	
b) H ₂ - 5 x 22.4 L = 112L	
Cl ₂ - 2 x 22.4L = 44.8 L	
c) 4 x 6.022x10 ²³ molecules (4mol molecules or 4N _A molecules)	
	Marks :(4)
Hide Answer	

Qn.

Choose the correct statements from those given below

a) The volume of a mole of gas at 300K and 1atm is 22.4 L .

b) 1GMM of any substance contains 6.022x10²³molecules.

c) The mass of $6.022 x 10^{23}\, \text{O}_2$ molecules is 16g .

d) The mass of 22.4L of oxygen at 273K and 1atm pressure is 32 g $\,$

Hint. statements b,d .	Marks :(2)
Hide Answer	

Qn No. 32	Chapter Name:Gas laws and Mole concept
Qn. Choose the correct statements from those given below a) The volume of a mole of gas at 300K and 1atm is 22.4 L . b) 1GMM of any substance contains 6.022x10 ²³ molecules. c) The mass of 6.022x10 ²³ O ₂ molecules is 16g . d) The mass of 22.4L of oxygen at 273K and 1atm pressure is 32 g	
Hint. statements b,d . Hide Answer	Marks :(2)

Qn No. 33

Chapter Name: Gas laws and Mole concept

Qn.

Arrange the following samples in the increasing order of their mass.

a) 5 GMM CO₂

b) 10 GMM Oxygen

- c) 2 mol H₂O
- d) 3 mol N₂

(Hint: Molecular mass- CO₂ =44,O₂=32,H₂O=18, N₂=28)

Hint.

a=220g,b=320g,c=36g,d=84g

.

c < d < a < b

Marks :(3)

Hide Answer

					Chapter Name:Gas laws and Mole conce
Qn.					
		nples in the asc	ending order of num	ber of moles.	
) 90 g H ₂ O					
) 48 g CH ₄					
i) 100 g Ca	CO3				
l) 96 g SO ₂					
Hint:Molec	ular mass- H ₂ 0	O =18,CH ₄ = 16,0	CaCO ₃ =100,SO ₂ =64)		
lint.					
1 = 5,b=3,c=					
: < d < b < a	a				
					Marks :(
	_				
lide Answer	-				
Qn No. 35					Chapter Name:Gas laws and Mole conce
Simplete ti					
	Atomic mass	Amount taken(g) Number of molecule	es number of atoms	
	Atomic mass A	Amount taken(g 10) Number of molecule (a)	es number of atoms (b)	
Substance					
Substance He	4	10	(a)	(b)	
He N ₂ Cl ₂	4 14 35.5	10 (c)	(a) 6.022x10 ²³ (f)	(b) (d)	
Substance He N ₂	4	10 (c) (e)	(a) 6.022x10 ²³	(b) (d) 10 x 6.022x10 ²³	
Substance He N ₂ Cl ₂ O ₂ Hint.	4 14 35.5 (g)	10 (c) (e) 80	(a) 6.022x10 ²³ (f) (h)	(b) (d) 10 x 6.022x10 ²³	
Substance I He N_2 Cl_2 O_2 Hint. $I = 2.5 \times 6.0$	4 14 35.5 (g) 022x10 ²³ b= 2.5	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	
Substance I He N_2 Cl_2 O_2 Hint. $I = 2.5 \times 6.0$	4 14 35.5 (g) 022x10 ²³ b= 2.5	10 (c) (e) 80	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	
Substance / He N ₂ Cl ₂ O ₂ Hint. a = 2.5 x 6.0	4 14 35.5 (g) 022x10 ²³ b= 2.5	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	
Substance / He N ₂ Cl ₂ O ₂ Hint. a = 2.5 x 6.0	4 14 35.5 (g) 022x10 ²³ b= 2.5 2x10 ²³ e = 355	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance / He N ₂ Cl ₂ O ₂ Hint. a = 2.5 x 6.0	4 14 35.5 (g) 022x10 ²³ b= 2.5 2x10 ²³ e = 355	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance / He N ₂ Cl ₂ O ₂ Hint. a = 2.5 x 6.0	$\begin{array}{c} 4 \\ 14 \\ 35.5 \\ (g) \\ 022 \times 10^{23} \text{ b} = 2.5 \\ 2 \times 10^{23} \text{ e} = 355 \\ \times 6.022 \times 10^{23} \end{array}$	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance / He N ₂ Cl ₂ O ₂ Hint. 1 = 2.5 x 6.0 I= 2 x 6.022 J=16 h=2.5 ±	$\begin{array}{c} 4 \\ 14 \\ 35.5 \\ (g) \\ 022 \times 10^{23} \text{ b} = 2.5 \\ 2 \times 10^{23} \text{ e} = 355 \\ \times 6.022 \times 10^{23} \end{array}$	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance / He N ₂ Cl ₂ O ₂ Hint. 1 = 2.5 x 6.0 I= 2 x 6.022 J=16 h=2.5 ±	$\begin{array}{c} 4 \\ 14 \\ 35.5 \\ (g) \\ 022 \times 10^{23} \text{ b} = 2.5 \\ 2 \times 10^{23} \text{ e} = 355 \\ \times 6.022 \times 10^{23} \end{array}$	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance / He N ₂ Cl ₂ O ₂ Hint. 1 = 2.5 x 6.0 I= 2 x 6.022 J=16 h=2.5 ±	$\begin{array}{c} 4 \\ 14 \\ 35.5 \\ (g) \\ 022 \times 10^{23} \text{ b} = 2.5 \\ 2 \times 10^{23} \text{ e} = 355 \\ \times 6.022 \times 10^{23} \end{array}$	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	Marks :(
Substance He N2 Cl2 O2 Hint. 1 = 2.5 x 6.0 I= 2 x 6.022 J=16 h=2.5 ± Iide Answer Dan No. 36	$\begin{array}{c} 4 \\ 14 \\ 35.5 \\ (g) \\ 022 \times 10^{23} \text{ b} = 2.5 \\ 2 \times 10^{23} \text{ e} = 355 \\ \times 6.022 \times 10^{23} \end{array}$	10 (c) (e) 80 5 x 6.022x10 ²³ c	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³	
Substance Image: Additional system of the syst	4 14 35.5 (g) 022x10 ²³ b= 2.5 2x10 ²³ e = 355 x 6.022x10 ²³	10 (c) (e) 80 5 x 6.022x10 ²³ c g f= 5 x 6.022x1	(a) 6.022x10 ²³ (f) (h) = 28g	(b) (d) 10 x 6.022x10 ²³ 5 x 6.022x10 ²³	

a) 10 g Hydrogen b) 100 g Calcium c) 64
g Oxygen d) 36
g Carbon

a) 10 GAM b) 2.5 GAM c) 4 GAM d) 3GAM

b < d < c < a

Marks :(3)

Hide Answer

Qn No. 37	Chapter Name:Gas laws and Mole concept
Qn.	
1mL of oxygen at constant temperature and pressure contains x molecules.	
write answer related to the following gases at same temperature and pressure.	
a) Number of molecules in 1mL hydrogen?	
b)Number of molecules in 5mL nitrogen ?	
c)Volume of 3x molecules of CO ₂ ?	
Hint.	
a = x, b = 5x , c = 3mL	
	Marks :(3)
Hide Answer	
Qn No. 38	Chapter Name:Gas laws and Mole concept
Qn.	
Choose the correct statements from those given below .	
(Hint : Atomic mass : C - 12 , O - 16)	
a) 6.022 x 10 ²³ molecules are there in 22 g CO _{2.}	
b) 1 GMM of CO ₂ is 22 g .	
c) Volume of 22 g CO ₂ at STP is 11.2 L.	
d) 22 g of CO ₂ contains3 x $\frac{1}{2}$ x 6.022 x 10 ²³ atoms.	
Hint.	
c,d	
	Marks :(2)
Hide Answer	

Qn No. 39

Chapter Name:Gas laws and Mole concept

Qn. Pick the odd one out ?

64 g SO $_2$, 2 x 6.022 x $10^{23}\,\text{H}_2$ molecules , 64 g O $_2$, 44.8 L CO $_2$ at STP

(Atomic mass : S - 32 , O -16)

Hint.64 g SO ₂	Marks :(1)
Hide Answer	
Qn No. 40	Chapter Name:Gas laws and Mole concept
Qn.	
Find a,b,c . (Hint: MM- CH ₄ =16)	
$(11111.11111-011_4-10)$	
\bigcap	
((a) GMM) (½ MOI)	
CH ₄ at STP	
$\cap \bigcirc \bigcirc \cap$	
$ \begin{pmatrix} Mass \\ (c) g \end{pmatrix} $ Total No. of atoms (b)	
$\left((\underline{c}) g \right)$ (\underline{b})	
Hint. a) ½ GMM	
b) $\frac{1}{2} \times 5 \times 6.022 \times 10^{23}$	
c) 8 g	
	Marks :(3)
Hide Answer	
Qn No. 41	Chapter Name:Gas laws and Mole concept
Qn. The mathematical representation of some gas laws are given. Identify the law related	to each one.
a) V∝T	
b)V ∝ 1/p	
c)V∝n	

a)Charles' law	
b) Boyle's law	
c)Avogadro's Law	
	Marks :(3)
Hide Answer	
Qn No. 42	Chapter Name:Gas laws and Mole concept
Qn.	
Find out the gas law related with each of the followig instances.	
a)The size of the balloon increases as it is inflated.	
b)An inflated balloon kept in direct sunlight is found to burst.	
c)Gases can be marketed in cylinders.	
Hint. a)Avogadro's Law	
b) Charles' law	
c) Boyle's law	
c/ boyle's law	Marks :(3)
Hide Answer	
Qn No. 43	Chapter Name:Gas laws and Mole concept
Qn.	
An inflated balloon contains X air molecules.After some time the volume of	the balloon is found to be the half at the same
temperature and pressure when a few air molecules are expelled out.	

a)How many molecules will be there in the balloon now?

b) Which is the gas law associated with this?

Hint.

a = X /2,

b -Avogadro's Law

Marks :(2)

Hide Answer

Qn No. 44

Chapter Name: Gas laws and Mole concept

Qn.

The mass of 5 GAM X is 80g . [Symbol is not real]

a) What is the atomic mass of this element ?

Marks :(3)
<i>,</i>