GOVT. MODEL QUESTION PAPER

STATISTICS

12TH STD.

TIME : 3 HOURS

PART I (50 MARKS)

Note : (1) Answer all questions.
(2) Each question carries one mark50 x 1 = 50

Choose the best answer :

- 1. When two events A and B are mutually exclusive, then P (A \cap B) is
 - (a) 1 (b) 0 (c) P(A) . P(B) (d) None of these
- 2. An integer is chosen from 1 to 20. the probability that the number is divisible by 4 is
 - (a) 1/4 (b) 1/3 (c) 1/2 (d) 1/10
- 3. In tossing three coins at a time, the probability of getting atmost one head is
 - (a) 3/8 (b) 7/8 (c) 1/2 (d) 1/8
- 4. The probability of two persons being born on the same day in an ordinary year (ignoring date)
 - (a) 1/49 (b) 1/365 (c) 1/7 (d) 1/366
- 5. The conditional probability of A given B is

(a)
$$\frac{P(A \cap B)}{P(B)}$$
 (b) $\frac{P(A \cap B)}{P(A)}$ (c) $\frac{P(A \cup B)}{P(B)}$ (d) $\frac{P(A \cup B)}{P(A)}$

- 6. Probability of drawing a spade queen from a well shuffled pack of cards is
 - (a) 1/13 (b) 1/52 (c) 4/13 (d) 8/13
- 7. If P(A) = 0.4, P(B) = 0.5 and $P(A \cap B) = 0.2$ then P(B/A) is
 - (a) 1/2 (b) 1/3 (c) 4/5 (d) 2/5
- 8. If F(x) is distribution function, then $F(-\infty)$ is

(a) -1 (b) 0 (c) 1 (d) $-\infty$

MAX. MARKS : 150

- The distribution of height of persons in a country is a random variable of the type: (a) Continuous random variable Discrete random variable (b) Neither discrete nor continuous (C) (d) random variable random variable 10. Var(5x + 2)(a) 25 var (x) (b) 5 var (x) (c) 2 var (x) (d) 25 A random variable x has E(x) = 2 and $E(x^2) = 8$, its variance is 11. (a) 4 (b) 6 (c) 8 (d) 2 12. If f(x) is the p.d.f. of the continuous random variable X, then $E(x^2)$ is $\int x f(x) dx$ ∫ f (x) dx (a) (b) (b) $\int_{-\infty}^{\infty} f(x^2) dx$ $\int x^2 \cdot f(x) dx$ (c)
- 13. If X is a random variable with its mean \overline{x} , the expression E(x- \overline{x})² represents
 - (a) the variance of x
 - (b) second central moment
 - (C) both (a) and (b)
 - (d) none of (a) and (b)
- If X is a random variable, E(e^{tx}) is known as 14.
 - characteristic function (a)
 - (b) moment generating function
 - (C) probability generating function
 - (d) none of these
- 15. For Bernoulli distribution with probability p of a success and q of a failure, the relation between mean and variance that hold is
 - Mean > variance (a) mean < variance (b)
 - (c) mean = variance (d) None of the above

- 9.
 - Continuous as well as discrete

16.	X is a Binomia	al Variate with	n mean =	= 4, va	ariance	e = 4/3,	the	n, P	(x = 0)	is
	(a) (2/3) ⁶	(b) (2/3) ⁵ (1/3	3) (a	c) (1	/3) ⁶		(d)	35 (2/3) ⁶	
17.	An approxima	te relation be	etween Q	.D, N	1.D. an	d S.D. (of n	orma	al distrik	oution is
	(a) 10 : 12 :	15 (b) 12	2 : 10 : 15	5	(c) 15	5 : 12 : 1	0	(d)	10 : 1	5 : 12
18.	The mean of I	normal distrib	oution is 6	50, th	en mo	de is eq	ual	to		
	(a) 60	(b) 40	(c) 50			(d) 30				
19.	The mean and	d variance of	a binomi	ial dis	stributio	on b (5,	1/3) is		
	(a) 5/3 & 10/9	9 (b) 5/2	2 & 10/6		(c) 5/3	3 & 10/6	6	(d)	5/2 & 1	0/9
20.	Poisson distri	bution is a lin	niting cas	se of l	oinomia	al distrik	outi	on w	hen	
	(a) $n \rightarrow \infty$, p -	\rightarrow 0; np = \sqrt{m}								
	(b) $n \rightarrow 0$, p –	→ ∞; np = 1/m	ı							
	(c) $n \rightarrow \infty$, p -	→ ∞; np = m								
	(d) $n \rightarrow \infty$; p -	→ 0; np = m								
21.	In normal dist	ribution skew	ness is							
	(a) one	(b) zero	(0	c) 3			(d)	-1		
22.	In normal dist	ribution the v	alue of K	urtos	is is					
	(a) 1	(b) 3	(0	c) -3			(d)	0		
23.	The area p (∞ < Z < 0) is								
	(a) 1	(b) 0.1	(0	c) 0.5	5		(d)	0		
24.	The hypothes	is may be cla	ssified a	S						
	(a) Simple (c) Null		(k (c	c) d)	Comp All of t	osite he abov	/e			
25.	Critical value	of Z∝ at 5%	level of	signif	icance	for two	tail	ed te	est is	
	(a) 1.645	(b) 2.33	(0	c) 2.5	58		(d)	1.96	6	
26.	H ₀ is rejected	when H_0 is tr	ue is							
	(a) Type II er	ror	(b) Type	e I eri	ror					

27.	(c) Si Wheth	mple er her a tes	ror st is or	ne side	(d) no d or two	one of o side	the abo d deper	ove nds on			
	(a) (c)	alterna null hy	tive hy pothes	ypothe sis	sis		(b) (d)	compo simple	osite h e hypot	ypothe thesis	sis
28.	Stand	ard erro	or of nu	umber	of succ	ess is	given k	у			
	(a)	√pq/n		(b)	√npq		(c)	npq		(d)	√np/q
29.	Statis	tic Z =	$\frac{1}{\sigma \sqrt{1/r}}$	- y n ₁ + 1/r	- is us	sed to	test the	e null hy	/pothe:	sis is	
	(a) (c)	H ₀ : μ ₁ H ₀ : μ =	+ μ ₂ = = μ ₀	= 0		(b) (d)	H ₀ : μ none	$_1 - \mu_2 =$ of the a	0 above		
30.	The s	tandard	devia	tion of	the sar	npling	distribu	ition is	called		
	(a) (c)	Probat Sampli	ole erro ng err	or or		(b) (d)	Stand Non-s	lard err amplin	or g error		
31.	The s	tandard	error	of the s	sample	mean	is				
	(a)	σ √n		(b)	$\frac{\sigma^2}{\sqrt{n}}$	(c)	σ ² 2n	(d)	$\frac{\sigma}{\sqrt{2n}}$		
32.	Stude	nť s t-dis	stribut	ion ran	iges fro	m					
	(a) -	∞ to 0		(b)	0 to ∞		(c)	-∞ to ⊲	×	(d)	0 to 1
33.	While case o	testing of small	the si samp	gnificar les, the	nce of t e degre	he diff es free	erence edom is	betwee	en two	sample	e mean in
	(a) n ₁	+ n ₂	(b)	n ₁ + n	₂ – 1	(c) r	n ₁ + n ₂ -	- 2	(d) n	n₁ + n₂ ·	+ 2
34.	Equal	ity of tw	о рор	ulation	variand	ces ca	n be te	sted by			
	(a)	t-test	(b)	F-test		(c)	χ²-tes	t	(d) No	one of t	the above
35.	Paired	d t-test i	s appl	icable,	when t	he ob	servatio	ons in th	ne two	sample	es are
	(a) (c)	Paired Equal i	n num	nber		(b) (d)	Corre all the	lated above	1		

- 36. Degrees of freedom for chi-square in case of contingency table of order 4 x 3 are
 - (a) 12 (b) 9 (c) 6 (d) 8
- The statistic χ^2 with usual notations in case of contingency table of order (rxs) 37. is given by the formula
 - $\chi^2 = \sum_{i=1}^{n} \left(\frac{(0i Ei)^2}{E_i} \right)$ (a) (b) $\chi^2 = \sum_{i=1}^{n} \left(\frac{(0i^2 - Ei^2)}{Ei} \right)$ $\chi^2 = \sum_{i=1}^{n} \left(\frac{(0i - Ei)}{E_i} \right)^2$
 - (c)
 - (d) all the above
- 38 The values of observed frequencies and expected frequencies are all equal then the value of χ^2 is

(b) +1 (a) -1 (c) >1 (d) 0

- 39. In the case of one-way classification with N observations and `t treatments, the degrees of freedom for error is
 - (a) N-1 (b) t-1 (c) N-t (d) Nt
- 40. Analysis of variance utilises
 - (b) $\chi^2 \text{test}$ (a) F-test (c) Z-test (d) t-test
- 41. With 90, 35, 25 as SST, SSR and SSC respectively in case of two-way classification, SSE is
 - (a) 50 40 30 (d) 20 (b) (C)
- 42. A time series consists of
 - two components (b) three components (a)
 - (c) four components (d) five components
- The component of a time series attached to long term variations is termed as 43.
 - cyclic variation secular trend (a) (b)
 - (c) irregular variation (d) all the above

44.	Busin	ess for	ecasts	are ma	ade on	the bas	sis of	
	(a) (c)	Prese Police	nt data s and	ı circum:	stances	6	(b) (d)	Past data All the above
45.	In cas	e of tw	e of two attributes A and B ($lphaeta$). <) -, then the attributes are
	(a) (c)	indep negat	endent ively as	ssociat	ed	(b) (d)	positiv none (vely associated of the above
46.	With t	he two	attribu	tes the	total n	umber	of clas	s frequencies is
	(a)	Two	(b)	Four	(c)	Eight	(d)	Nine
47.	In cas is	e of tw	o attrib	outes A	and B	the cla	ss freq	uency (AB) = 0 the value of Q
	(a)	1	(b)	-1	(c)	0	(d)	$-1 \leq Q \leq 1$
48.	A bus	iness v	vho is s	said to	be ave	rse to r	isk	
	(a)	Prefei	rs to ta	ke larg	e risks	to earn	large	gains.
	(b)	Prefei	rs to ac	t any ti	me the	expec	ted mo	netary value is positive
	(c)	Avoid	s all sit	uations	s but th	ose wit	h very	high expected values.
	(d)	None	of thes	e				
49.	The c knowr	riterion n as	which	selects	s the ac	ction fo	r which	maximum pay-off is lowest is
	(a)	Max –	- min cı	riterion				
	(b)	Min –	max ci	riterion				
	(c)	Max -	- max c	riterior	ı			
	(d)	None	of thes	e				
50.	Decis	ion the	ory is c	concern	ed with	า		
	(a)	the ar	nount d	of inform	mation	that is	availab	le.
	(b)	Criteri	ia for m	neasuri	ng the	`goodn	ess' of	a decision.
	(c)	Selec	ting op	timal d	ecision	in seq	uential	problems

(d) All the above

6

PART II (30 MARKS)

Note: (1) Answer any 15 questions (2) Each question carried 2 marks

15 x 2 = 30

- 51. State the axioms of probability
- 52. Find the probability that a leap year selected at random will contain 53 Sundays.
- 53. A random variable X has the following probability distribution. Find

P (x <u>></u> z)

Value of X	0	1	2	3	4
P (X = x)	3a	4a	6a	7a	8a

- 54. Define mathematical expectation for discrete random variable.
- 55. Let X be a continuous random variable with probability density function given by f (x) = $\int 2x$, 0 < x <1. Find the expected value of X. o otherwise
- 56. Comment on the following: 'The mean of a binomial distribution is 5 and its variance is 9.
- 57. Find the Binomial distribution whose mean is 3 and the variance is 2.
- 58. State any four properties of normal distribution.
- 59. In a test of significance, the calculated value is less than the critical value. What is your inference?
- 60. State type one error and type two error.
- 61. What `test statistic' is to be used to find the test of significance for the following problem? `1000 articles from a factory A are examined and found to have 3% defectives. 1500 similar articles from a second factory B are found to have only 2% defectives. Can it be reasonably concluded that the product of the first factory is inferior to the second ?
- 62. State the assumptions of students t test
- 63. Explain the term ` degrees of freedom' .
- 64. What are the precautions are necessary while applying chi-square test?
- 65. What are the components of time series?

- 66. Write any two merits and demerits of semi average method.
- 67. Write the Yule's coefficient of association.
- 68. Verify whether the given data N = 100 (A) = 75, (B) = 60, and (AB) = 15 are consistent.
- 69. Explain the statistical decision theory.
- 70. Find the minimax regret for the following pay off table

Act	States of Nature					
ACI	S₁	S ₂				
A ₁	10	15				
A ₂	20	12				
A ₃	30	11				

PART III (30 MARKS)

Note: (1) Answer any 6 questions
(2) Each question carries 5 marks6 x 5 = 30

- 71. An urn contains 5 red and 7 green balls. Another urn contains 6 red and 9 green balls. If a ball is drawn from any one of the two urns, find the probability that the ball drawn is green.
- 72. A random variable X has the density function $f(x) = Ax^2$, 0 < x < 1. Determine A and find the probability between 0.2 and 0.5
- 73. Eight coins are tossed simultaneously. Find the probability of getting atleast six heads.
- 74. Suppose on an average 1 house in 1000 in a certain district has a fire during a year. If there are 2000 houses in that district, what is the probability that exactly 5 houses will have a fire during the year? ($e^{-2} = 0.1353$)
- 75. A car company decided to introduce a new car whose mean petrol consumption is claimed to be lower than that of the existing car. A sample of 50 new cars we taken and tested for petrol consumption. It was found that mean petrol consumption for the 50 cars was 30 km per litre. Test at 5% level of significance whether the company's claim that he new car petrol consumption is 28 km per litre on the average is acceptable.
- 76. A soap manufacturing company was distributing a particular brand of soap through a large number of retail shops. Before a heavy advertisement campaign, the mean sales per week per shop was 140 dozens. After the campaign, a sample of 26 shops was taken and the mean sales was found to be 147 dozens with standard deviation 16. Can you consider the advertisement effective?

77. Construct a four yearly centered moving average from the following data.

Year	1940	1950	1960	1970	1980	1990	2000
Imported cotton consumption in thousands	129	131	106	91	95	84	93

78. Following data relate to literacy and unemployment in a group of 500 persons. Calculate Yule's coefficient of association between literacy and unemployment and interpret it

Literate unemployed = 220 Literate employed = 20 Illiterate employed = 180

79. Given the following pay – off of 3 acts A_1 , A_2 , A_3 and their events E_1 , E_2 , E_3 .

Act States of Nature	A ₁	A ₂	A ₃
E1	35	-10	-150
E ₂	200	240	200
E ₃	550	640	750

The probabilities of the states of nature are respectively 0.3, 0.4, 0.3. Calculate and tabulate EMV and conclude which of the acts can be chosen as the best.

PART IV (40 MARKS)

Note: (1) Answer any 4 questions (2) Each question carries 10 marks

 $4 \times 10 = 40$

- 80. In a bolt factory machines A_1 , A_2 , A_3 manufacture respectively 25%, 35% and 40% of the total output. Of these 5,4 and 2 percent are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine A_2 ?
- 81. A sample of 100 dry cells tested to find the length of life produced the following results $\mu = 12$ hours $\sigma = 3$ hours. Assuming the data to be normally distributed, what percentage of battery cells are expressed to have a life (i) more than 15 hours (ii) between 10 and 14 hours (iii) less than 6 hours?
- 82. In a random sample of 1000 persons from town A, 400 are found to be consumers of wheat. In a sample of 800 from town B, 400 are found to be consumers of wheat. Do these data reveal a significant difference between

town A and town B, so far as the proportion of wheat consumers is concerned?

83. An automobile manufacturing firm is bringing out a new model. In order to map out its advertising campaign, it wants to determine whether the model will appeal most to a particular age – group or equal to all age groups. The firm takes a random sample from persons attending a pre-view of the new model and obtained the results summarized below:

Person who	Age groups								
Ferson who	Under 20	20 – 39	40 – 50	60 & above	Total				
Liked the car	146	78	48	28	300				
Disliked the car	54	52	32	62	200				
	200	130	80	90	500				

What conclusions would you draw from the above data?

84. The following are the defective pieces produced by four operators working in turn, on four different machines:

	Operator							
Machine	I	II	III	IV				
A	3	2	3	2				
В	3	2	3	4				
С	2	3	4	3				
D	3	4	3	2				

Perform analysis of variance at 5% level of significance to ascertain whether variability in production is due to variability in operator's performance or variability in machine's performance.

85. Fit a straight line trend by the method of least squares for the following data

Year	1983	1984	1985	1986	1987	1988
Sales In Lacs.	3	8	7	9	11	14

Also estimate the sales for the year 1991.

86. A manufacturing company has to select one of the two products A or B for manufacturing. Product a required investment of Rs.20,000 and product B, Rs.40,000. Market research survey shows high, medium and low demands with corresponding probabilities and returns from sales in Rupees thousands for the two products in the following table.

Market	Proba	ability	Return from sales			
demand	Α	В	Α	В		
High	0.4	0.3	50	80		
Medium	0.3	0.5	30	60		
Low	0.3	0.2	10	50		

Construct an appropriate decision tree. What decision the company should take?