Roll No: \square
SUMMATIVE ASSESSMENT-2 (2014-15)

CLASS X

Sub: MATHEMATCS(NVEQF)

Time Allowed : 3 hours
M.M: 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper contains of 31 questions divided into four sections A, B, C and D. Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each and section D contains 11 questions of 4 marks each.
(iii) Use of calculators is not permitted.

SECTION—A

1. If $2, K$ and 26 are in A.P. find the value of K.
2. From a point P, the length of a tangent to a circle is 24 cm and distance of point P from the centre of the circle is 25 cm . Find radius of the circle.

3. Radius of a wheel is 35 cm . Find distance covered by the wheel in one revolution. (use $\pi=\frac{22}{7}$)
4. Shadow of a tower is equal to its height.Find the Sun 's altitude .

SECTION-B
5. Solve for x :
$3 x^{2}-8 x+5=0$
6. Find discriminant of quadratic equation $4 X^{2}-3 X-1=0$. Also write nature of roots.
7. Prove that the tangents at the end points of a diameter of a circle are parallel.
8. Find area of a sector of a circle whose radius is 3.5 cm and sector angle is 60°. (Use $\pi=22 / 7$)
9. Represent the following situation as quadratic equation:

Sum of a number and its reciprocal is $\frac{17}{4}$.
10. Radius of a semi-circular protector is 3.5 cm . Find its perimeter $(\pi=22 / 7)$

SECTION-C

11. For what value of K the quadratic equation $2 x^{2}-k x+\frac{1}{2}=0$ has equal roots.
12. Solve the following quadratic equation by completing square.
$2 X^{2}-7 X+3=0$
13. Prove that the angle between two tangents drawn from an external point to a circle is supplementory to the angle subtended by the line segment joining points of contact at the center.
14. Prove that the tangents drawn from an external point to a circle are equal in length.
15. A square $A B C D$ is inscribed in a quadrant $A P C D$. If $A B=14 \mathrm{~cm}$, find the area of shaded region. (use $\quad \pi=22 / 7$) Fig.

16. From a solid cube of 10 cm a hemi-spherical cavity of 3.5 cm is hollowed out. Find total surface area of the new solid.(Use $\pi=22 / 7$)
17. A toy is in the form of a cone mounted on a hemi-sphere of same radius 7 cm . If the total height of the toy is 22 cm . Find volume of the toy.(Use $\pi=22 / 7$)
18. A metallic sphere of radius 9 cm is melted and drawn into a cylindrical wire of radius 1 mm . Find length of the wire in meter.
19. The product of two consecutive positive even numbers is 80 . Find them.
20. A conical tent of height 6 m and base diameter 16 m is to be made by canvas .Find the cost of canvas used at the rate of Rs98/m².

SECTION- D
21. Solve for x :
$\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4}$
22. The diagonal of a rectangular field is 60 m more than the shortest side. If longer side is 30 m more than the shortest side .Find sides of the rectangle.
23. Rs. 6400 were divided equally among certain number of persons. Had there been 10 more persons each would have got Rs. 32 less. Find original number of persons.
24. A parallelogram $A B C D$ is circumscribing a circle. Prove that $A B C D$ is a rhombus.
25. $A B C$ is a right triangle with angle $B=90^{\circ}, A B=24 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$. A circle has been inscribed inside the triangle .Find radius of the circle.
26. As observed from the top of 75 m high light house the angle of depressions of two ships in the sea are 30° and 45°. If one ship is exactly behind the other on the same side of the light house. Find distance between the two ships.
27. If the angle of elevation of a jet plane from a point on the ground is 60°. After a flight of 20 seconds the angle of elevation becomes 30°. If the jet plane is flying at a constant height of 2400 V 3 m . Find the speed of the jet plane.
28. $A B$ and $C D$ are two parallel tangents to a circle $C(O, r)$. Another tangent to the circle intersects $A B$ at P and $C D$ at Q. Prove that $P Q$ subtends right angle at O.
29. Two poles of equal height are on either side of a 50 m . wide road. The angles of elevation of top of the poles are 60° and 30° at a point on the road between the poles. Find position of the point and height of each pole.
30. A person donated a full bucket milk to a hospital to distribute among the patients. The bucket is in the form of a frustum of a cone of height 15 cm and end radii 16 cm and 20 cm . Patients have cylindrical tumblers of radius 4 cm and height 5 cm . If full tumbler milk is given to each patient, find the number of patients who got milk. Write the moral value depicted in the question.
31. Water is flowing at the rate of $15 \mathrm{~km} / \mathrm{hr}$ through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which level of water in tank will raise by 21 cm . (Use $\pi=22 / 7$).

Summative assessment-II (2014-15)

Sub- Mathematics(NVQM)

Class X

BLUE PRINT

Marks	1			
Algebra (28)	1	3	3	3
Geometry (21)	1	1	2	3
Trigonometry (13)	1	-------	--------	3
Mensuration (28)	1	2	5	2

TOTAL = 90 MARKS

MARKING SCHEME

S A II 2014-15
Mathematics $-x$ (Normal course)

Section-A

1. $k-2=26-k$
$K=28 / 2=14$
1/2 mrk
1/2 mrk
2. $\angle P Q O=90^{\circ}$
$\mathrm{r}=\sqrt{ } \mathrm{PO}^{2}-\mathrm{PQ}^{2}$
$=\sqrt{25^{2}-24^{2}}$
$=7 \mathrm{~cm} \quad 1 / 2 \mathrm{mrk}$
3. Distance covered $=2 \pi r$
$1 / 2 \mathrm{mrk}$
$=2 \times \frac{22}{7} \times 35 \mathrm{~cm}=220 \mathrm{~cm} \quad 1 / 2 \mathrm{mrk}$
4 correct fig
Calculating sun's altitude $=45^{\circ}$
$1 / 2 \mathrm{mrk}$
$1 / 2$

SECTION-B

5. $3 x^{2}-8 x+5=0$
$3 x^{2}-3 x-5 x+5=0$
$3 x(x-1)-5(x-1)=0$
$(x-1)(3 x=5)=0$
Either $\quad(x-1)=0 \quad$ or, $(3 x-5)=0$
$x=1 \quad$ or, $\quad x=3$
6. $a=4, b=-3, c=-1$
$D=b^{2}-4 a c$
$=(-3)^{2}-4.4(-1)$
$=9+16=25$
Equation has two distinct real roots
7. For correct fig.

For correct proof

$$
\begin{aligned}
& 1 / 2 \mathrm{mrk} \\
& 1 / 2 \mathrm{mrk} \\
& 112 \mathrm{mrk} \\
& 1 / 2 \mathrm{mark}
\end{aligned}
$$

8. $r=3.5 \mathrm{~cm}, ~ \theta=60^{\circ}$

Area of asector $=\pi \quad r^{2} \theta / 360$
$=\frac{22 X 3.5 X 3.5 \times 60}{360}$
$=38.5 \times \frac{1}{6}$
$1 / 2$ mark
$1 \frac{1}{2}$ mark

```
=6.42 cm}\mp@subsup{}{2}{2}\mathrm{ (approx.)
```

9. No. of possible outcomes= 20

Favourable outcomes, 6,12,18.
No. of Favourable outcomes=3
$P(E)=\frac{3}{20}$
10. possible outcomes= $\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}$

Favourable outcomes $==\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$
1/2mark
1/2mark
No. of possible outcomes=4
No. of favourable outcomes=3
$P($ getting at least one head $)=\frac{3}{4}$
1mark

SECTION-C

11. For equal roots
$b^{2}-4 a c=0$ 1mark
$[-K]^{2}-4 \times 2 \times \frac{1}{2}=0 \quad 1$ mark
$K^{2}-4=0$
$K^{2}=4$
$K= \pm 2$
1 mrk
12. $2 \mathrm{X}^{2}-7 \mathrm{X}+3=0$

Completing square 2mrks
Getting values of $X=3, \frac{1}{2} \quad 1 \mathrm{mrk}$
13. Given ,to prove, fig $1 \frac{1}{2}$ mark

Correct proof
1 $\frac{1}{2}$ marks
14. Given, to prove, fig. and const. 1mark

Correct proof 2marks
15. $A C=14 \sqrt{2} \mathrm{~cm}$

Radius of the quadrant $=14 \sqrt{2} \mathrm{~cm} \quad 1$ mark
Area of the quadrat $=\frac{1}{4} \cdot \frac{22}{7} \cdot 14 \sqrt{2} \mathrm{~cm} 14 \sqrt{ } 2 \mathrm{~cm}=308 \mathrm{~cm}^{2} \quad 1 \mathrm{mrk}$
Area of the square $=14 \times 14=196 \mathrm{~cm}^{2} \quad 1 / 2$ mark
Area of the shaded region $=308-196=112 \mathrm{~cm}^{2}$
1/2mark
16.S.A. of the new solid=S.A. of the cube+ C.S.A. of hemi-sphere - area of face of hemisphere.
$=6 \times 10 \times 10+2 \pi r^{2}-\pi r^{2}$
$=600+\pi r^{2}$
$=600+\frac{22}{7} \times 3.5 \times 3.5$
$=600+28.5$
$=628.5 \mathrm{~cm}^{2}$
17. Radius $(r)=7 \mathrm{~cm}$

Height of the conical part $=22-7 \mathrm{~cm}=15 \mathrm{~cm}$
1/2mark
1/2mark
1/2mark

1/2mark

1/2mark
$=1488 \frac{2}{3} \mathrm{~cm}^{3}$
1/2mark
18. Radius of the sphere $(R)=9 \mathrm{~cm}$

VOI. of the sphere $=\frac{4}{3} \pi \mathrm{R}^{3}$
$=\frac{4}{3} \pi 9^{3} \mathrm{~cm}^{3}$
1mark
Radius of the wire $(\mathrm{r})=1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}$
Let length of the wire be xcm
Vol. of the wire $=\pi r^{2} h$
$=\pi \cdot \frac{1}{10} \mathrm{~cm} \cdot \frac{1}{10} \mathrm{~cm} . \mathrm{xcm}$
Vol. of wire $=$ vol. of sphere
$\pi \cdot \frac{1}{10} \mathrm{~cm} \cdot \frac{1}{10} \mathrm{~cm} . \mathrm{xcm}=\frac{4}{3} \pi 9^{3} \mathrm{~cm}^{3}$
$X=4 \times 81 \times 3 \times 100 \mathrm{~cm}$
$=4 \times 81 \times 3 \mathrm{~m}$
$=972 \mathrm{~m}$
19. Let two consecutive numbers are X and $(X+2)$
$\frac{1}{2} \mathrm{mrk}$
A.T.Q $\quad X(x+2)=80$
$X^{2}+2 X-80=0 \quad 1$ mrk
Solving for ' X ' $=-10$, or 8
Numbers are $=8,10$

1 mrk
$\frac{1}{2} \mathrm{mrk}$
20. Height of conical tent $(h)=6 \mathrm{~m}$

Diameter $=16 \mathrm{~m}$

Radius $(r)=8 m$

Cost of canvas $=\frac{22}{7} \times 8 \times 10 \mathrm{~m}^{2} \mathrm{X}$ Rs 98=Rs .24640 1 mrk

SECTION-D

21. $\cdot \frac{x+3}{x-2}-\frac{(1-x)}{x}=\frac{17}{4}$

$$
\begin{aligned}
& \frac{x(x+3)-(x-2)(1-x)}{x(x-2)}=\frac{17}{4} \\
& \frac{x 2+3 x-(x-x 2-2+2 x))}{x 2-2 x}=\frac{17}{4}
\end{aligned}
$$

$$
\frac{x 2+3 x-x+x 2+-2 x}{x 2-2 x}=\frac{17}{4}
$$

$$
\frac{2 x 2+2}{x 2-2 x}=\frac{17}{4}
$$

$$
17 x^{2}-34 x=8 x^{2}+8
$$

$$
9 x^{2}-34 x-8=0
$$

1/2mark

$$
9 x^{2}-36 x+2 x-8=0
$$

$$
9 x(x-4)+2(x-4)=0
$$

$$
(x-4)(9 x+2)=0
$$

1mark

Either $x-4=0$ or, $9 x+2=0$
$X=4$ or , $x=\frac{-2}{9}$
22. Let the shorter side be X

Then diagonal= $\mathrm{X}+60$
And longer side $=X+30$ 1mark
By pytagoras theorem
$(X+60)^{2}=X^{2}+(x+30)^{2}$
$\mathrm{X}^{2}-60 \mathrm{x}-2700=01$ 1mrk
$(x-90)(X+30)=0$
X=90, -30 (not possible) 1mrk

Therefore shorter side=90m
Diagonal=150m
Longer side $=120 \mathrm{~m} \quad 1 \mathrm{mrk}$
23. Let original no. of persons $=x$

New no. of persons $=x+10$
Amount to be divided equally $=$ Rs 6400
Original share per person $=$ Rs $\frac{6400}{x}$
1/2mrk
New share per person $=$ Rs $\frac{6400}{x+10}$
1/2mark
A.t.q

Rs $\frac{6400}{x}-\operatorname{Rs} \frac{6400}{x+10}=32$ 1/2mark
$\frac{6400.10}{x(x+10)}=32$
$\frac{64000}{x 2+10 x}=32$
$32\left(x^{2}+10 x\right)=64000$
$x^{2}+10 x=2000$
$x^{2}+10 x-2000=0$
$(x+50)(x-40)=0$
Either $\quad x+50=0$ or, $x-40=0$
$x=-50$ or $x=40$
Rejecting $x=-50$
$:-$ Original no. of persons $=40 \quad 2$ mark
24.

Given, To prove ,Correct fig.
$1 \frac{1}{2}$ mark
Proving $A B+C D=B C+A D$
$1 \frac{1}{2}$ mark
Proving parallelogram as rhombus
1mark
25. For fig.

1/2mark

$$
A C=\sqrt{2} 4^{2}+7^{2}=25 \mathrm{~cm}
$$

1/2mark

Area of trig. $\mathrm{ABC}=\frac{1}{2} \times 7 \times 24=84 \mathrm{~cm}^{2} \quad 1 / 2$ mark
Area of trig $A B C=$ Area of trig. $A O B+$ Area of trig $B O C+$ Area of trig. $A O C$ 1/2Mark
$84=\frac{1}{2} \cdot 24 \cdot r+\frac{1}{2} \cdot 7 \cdot r+\frac{1}{2} \cdot 25 \cdot r$
$84=\frac{1}{2} \cdot r(24+7+25)$
$84=28 r \quad 1 / 2$ mark
$r=3 \mathrm{~cm}$
1/2mark
26. In fig. $A B$ is the light house, C and D are positions of ships

In rt. triangle BAD
$\frac{A B}{A D}=\tan 45^{\circ}$
$\frac{75 m}{A D}=1$
$A D=75 m$
(1)

1mark

In rt. triangle BAC
$\frac{A B}{A C}=\tan 30^{\circ}$
$\frac{75 m}{A C}=\frac{1}{\sqrt{3}}$
$A C=75 \sqrt{3} \mathrm{~m}$
1 mark
Distance between the two ships =AC - AD

27. P is a point on ground
A and B are positions of jet plane

In right triangle PCA

1 mrk
$\frac{A C}{P C}=\tan 60^{\circ}$
$\frac{2400 \sqrt{3}}{P C}=\sqrt{3}$
$P C=2400 \mathrm{~m}$
1 mrk

In right triangle PDB
$\frac{B D}{P D}=\tan 30^{\circ}$
$\frac{2400 \sqrt{3}}{P D}=\frac{1}{\sqrt{3}}$

$P D=7200 \mathrm{~m}$	1 mrk
Distance covered in $20 \mathrm{~s}(C D)=7200-2400=4800 \mathrm{~m}$	$1 / 2 \mathrm{mrk}$
Speed $=\frac{4800 \mathrm{~m}}{20 \mathrm{~s}}=240 \mathrm{~m} / \mathrm{s}$	$1 / 2 \mathrm{mrk}$

28. Given ,to prove,fig ,construction 2mrk

Correct proof 2 mrk
29.

$A B$ and $C D$ are two poles of equal height.
$A C=50 \mathrm{~m}$ wide road, P is a point on the road .
$A P=x$,So $P C=50-X \quad 1$ mrk
In rt. tri . APB
$\frac{A B}{A P}=\tan 60^{\circ}$
$\frac{A B}{X}=\sqrt{3}$

$$
A B=x \sqrt{3}
$$

eqn (1)

$$
\begin{array}{cl}
\mathrm{AB}=\frac{50-X}{\sqrt{3}} & \text { eqn }(2) \\
\text { mrk } &
\end{array}
$$

From eqn (1) and eqn (2)
$x \sqrt{3}=\frac{50-x}{\sqrt{3}}$
$3 X=50-x$
$4 \mathrm{X}=50$
$X=12.5 \mathrm{~m}$
Distance of point from first pole $=12.5 \mathrm{~m}$
Height of poles $=12.5 \sqrt{3} \mathrm{~m}$
$1 / 2 \mathrm{mrk}$

30. FOR Frustum

$\mathrm{R}=20, \mathrm{r}=16, \mathrm{~h}=15$	$1 / 2 \mathrm{mrk}$
Vol of frustum $=\frac{1}{3} \pi h(R 2+r 2+R r)$	$1 / 2 \mathrm{mrk}$
$\frac{1}{3} \pi 15(20.20+16.16+20.16) \quad \mathrm{cm}^{3}$	
$=5 \pi \times 976 \mathrm{~cm}^{3}$	$1 / 2 \mathrm{mrk}$
For cylindrical tumbler	
$\mathrm{h}=5 \mathrm{~cm}, \mathrm{r}=4 \mathrm{~cm}$	$1 / 2 \mathrm{mrk}$
volume $=\pi \mathrm{r}^{2} \mathrm{~h}$	1 mrk
$=\pi(4)^{2} 5 \mathrm{~cm}^{3}=80 \pi \mathrm{~cm}^{3}$	$1 / 2 \mathrm{mrk}$
No. of patients who got milk= $\frac{1}{\text { volume of } \text { a tumbler }}$	
$=\frac{5 \pi .976}{80 \pi}=61$ persons	

31. Diameter of the pipe $=14 \mathrm{~cm}$

Radius $(\mathrm{r})=7 \mathrm{~cm}=7 / 100 \mathrm{~m}$
Speed of water $=15 \mathrm{~km} / \mathrm{hr}=15000 \mathrm{~m} / \mathrm{hr}$
Volume of water flown through pipe in one hour $=\pi r^{2} h$
1/2mrk
1/2mrk
$=\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} \times 15000 \mathrm{~m}^{3} \quad 1 / 2 \mathrm{mrk}$
$=11 \times 7 \times 3 \mathrm{~m}^{3} \quad 1 \mathrm{mrk}$
Volume of water in tank $=50 \mathrm{~m} \times 44 \mathrm{~m} \times \frac{21}{100} \mathrm{~m}$
$=22 \times 21 \mathrm{~m}^{3}$
Time required $=\frac{22 \times 21}{11 \times 7 \times 3} \mathrm{hrs}=2 \mathrm{hrs}$

1 mrk
$1 / 2 \mathrm{mrk}$

