Marking Scheme

PRE BOARD -1

KVS LUCKNOW REGION 2023-24

CLASS-X

SUBJECT- MATHEMATICS(STANDARD)-041 Max. Marks

80

1	OPTION C (20)
2	OPTION B (2)
3	OPTION C (38)
4	OPTION D (5)
5	OPTION B (2)
6	OPTION B (-3/7)
7	OPTION A (9)
8	OPTION A(3)
9	OPTION D (20)
10	OPTION B (12)
11	OPTION A (25)
12	OPTION A (50)
13	ОРТІОN В (1 /√10)
14	OPTION C (128)
15	OPTION D (3:1)
16	OPTION C
17	OPTION D (0.993)
18	OPTION A (1/18)
19	OPTION A
20	OPTION C

SECTION B

-		
Q.21	CORRECT VALUES SUM OF ZEROES AND PRODUCT OF ZEROES K= 7	1 + 1
Q.22	CORRECT RATIO 2 : 9 Y = -4/ 11	1 + 1
Q.23	CORRECT SIMILARITY OF TRIANGLE CORRECT RELATION	1+1
Q.24	CORRECT PROOF AND USING CORRECT THEOREM	1 + 1

Q.25 $(\sin \theta + \cos \theta)^2 = \sqrt{2} \ge \sqrt{2}$
We get $2\sin \theta .\cos \theta = 1$
Now $\tan \theta + \cot \theta = (\sin^2 \theta + \cos^2 \theta) / \sin \theta .\cos \theta$
= 2
OR
 $(1 + \cot A - \csc A) (1 + \tan A + \sec A)$
Using correct identity
Correct Proof1

SECTION C

Q.26	Let us assume, to the contrary, that $\sqrt{5}$ is rational. That is, we can find	
	integers a and b ($ eq$ 0) such that $\sqrt{5} = rac{a}{b} \cdot$, and assume that a and b are	1
	coprime.	1
	So, $\sqrt{5}$ b = a	
	Squaring on both sides, and rearranging, we get	
	$5b^2 = a^2$. Therefore, a^2 is divisible by 5, and by Theorem 1.3, it follows that a is	1
	also divisible by 5. So, we can write a = 5c for some integer c.	
	we get $5b^2 = 25a^2$, that is, $b^2 = 5a^2$. This means that b^2 is divisible by 5, and so b	
	is also divisible by 5 (using Theorem 1.3 with $p = 5$). Therefore, a and b have	
	at least 5 as a common factor. But this contradicts the fact that a and b are	1
	coprime. This contradiction has arisen because of our incorrect assumption	
	that $\sqrt{5}$ is rational. So, we conclude that $\sqrt{5}$ is irrational.	
Q.27.	$X^{2} + Y^{2} = 157$ Equation 1	1/2
	4(X+Y) = 68	1/2
	X + Y = 17 , put value of y in equation 1 On solving we get $Y^2 - 17Y + 66 = 0$	1
	THEN Y = 11,6	1
	SIDES OF SQUARES ARE 11 AND 6cm.	_
Q.28		1+1+1
	x cm	
	E	
	8 cm	
	6 cm	
	$C \leftarrow 6 \text{ cm} \rightarrow D \leftarrow 8 \text{ cm} \rightarrow B$	
		4
		1
		1

1 BD = 8 cm and DC = 6 cm BE = BD = 8 cm CD = CF = 6 cmLet AE = AF = x cmIn ∆ABC, a = 6 + 8 = 14 cm 1 b = (x + 6) cmc = (x + 8) cm $s = \frac{a+b+c}{2} = \frac{14+x+6+x+8}{2} = \frac{2x+28}{2} = (x + 14) \text{ cm}$ 29. $ar(\Delta ABC) = \sqrt{s(s-a)(s-b)(s-c)}$. $= \sqrt{(x+14) \times x \times 8 \times 6} = \sqrt{48x \times (x+14)} \text{ cm}^2$...(i) 1+1 $ar(\Delta ABC) = ar(\Delta OBC) + ar(\Delta OCA) + ar(\Delta OAB)$ Again, $= \frac{1}{2} \times 4 \times a + \frac{1}{2} \times 4 \times b + \frac{1}{2} \times 4 \times c$ 1 $= 2a + 2b + 2c = 2(a + b + c) = 2 \times 2(x + 14)$...(ii) From (i) and (ii), we get $48x(x+14) = 4^2(x+14)^2$ $\sqrt{48x(x+14)} = 4(x+14)$ ⇒ 30 $\Rightarrow \qquad 3x(x+14) = (x+14)^2$ $48x(x+14) = 16(x+14)^2$ ⇒ $2x = 14 \implies x = 7$ 3x = x + 14⇒ ⇒ AB = x + 8 = 7 + 8 = 15 cm1 AC = x + 6 = 7 + 6 = 13 cm 2 30 $\theta + \theta = \theta - \theta$ $\theta + \theta$ $\theta(\theta + 1) \theta - 1)(\theta)$ $= \theta - \theta$ Length of arc Area of the segment or

Solution : Area of the segment AYB
= Area of sector OAYB – Area of
$$\Delta OAB$$

Now, area of the sector OAYB = $\frac{120}{360} \times \frac{72}{2} \times 21 \times 21 \text{ cm}^2 = 462 \text{ cm}^3$
For finding the area of ΔOAB , draw OM $\perp AB$ as shown in Fig. 11.7.
Note that OA = OB. Therefore, by RHS conguence, $\Delta AMO \equiv \Delta BMO$.
So, M is the mid point of AB and $\angle AOM = \angle BOM = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$.
Let OM $\times \text{ cm}$
So, from ΔOMA , $\frac{OM}{OA} = \cos 60^{\circ}$
 α , $\frac{x}{21} = \frac{1}{2} \left(\cos 60^{\circ} = \frac{1}{2}\right)$ Fig. [1.7.
 α , $x = \frac{21}{2}$
So, $OM = \frac{21}{2} \text{ cm}$
Also, $\frac{OM}{OA} = \sin 60^{\circ} = \frac{\sqrt{5}}{2}$
So, $AM = \frac{21\sqrt{5}}{2} \text{ cm}$
So, $AM = 21\sqrt{5} \text{ cm}^2$
So, $AM = \frac{21\sqrt{5}}{2} \text{ cm}^2$
So $(AB = \frac{1}{2} \text{ cm}^2) \text{ cm}^2$
Since pack of playing have 52 cards, therefore $n(S)=52$
i) Let A: getting king of black colour
 $n(A)=2$
 $p(A)=\frac{\pi(A)}{\pi(S)} = \frac{2a}{52} = \frac{7}{13}$
ii) Let C: getting not a face card
 $n(C)=40$
P(C) $=\frac{\pi(O)}{\pi(S)} = \frac{40}{2} = \frac{10}{13}$
OR
Total outcomes = 36
(1)/4
(ii) $2/6$
(iii)/718

SECTION D

Q.32	Let the speed of train be xkm/h and scheduled time of journey be y hours.	
	Distance = Speed x Time = xy km	
	Case 1 : 2x – 3y = -12	1

Class intervals	Frequency	Cumulative frequency
0 - 100	2	2
100 - 200	5	7
200 - 300	x	7 + x
300 - 400	12	19 + <i>x</i>
400 - 500	17	36 + <i>x</i>
500 - 600	20	56 + x
600 - 700	у	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y
So, $l = 500$, $f = 20$. Using the formula :	.0	$\left(\frac{n}{2} - cf}{f}\right)h$, we get
i.e.,	525 = 500 - 525 - 500 = (14 -	$+\left(\frac{50-36-x}{20}\right)\times100$
i.e.,	525 - 500 = (14 - 25) = 70 - 100	
i.e.,	5x = 70 - 2	
So,	x = 9	
	(1), we get $9 + y = 24$	
i.e.,	y = 15	

36. (i)	A + 3d = 1800, a + 7d = 2600 D = 200 and a = 1200
	(ii) a ₁₂ = a +11d = 3400
	(iii)S ₁₀ = 21000
	OR
	$S_n = 31200$, $a = 1200$, $d = 200$, $n = ?$
	On putting value $S = n/2\{2a + (n-1)d\}$
	N= 13
37.	(i) Position of red flag= (2 , ¼ x100)= (2,25)
57.	(ii) Distance between two flags = $\sqrt{36 + 25} = \sqrt{61}$
	(iii) Position of the blue flag = (5, 22.5)
	OR
	Ratio between Green and Red Flag is 1:3
	Required pont = $(7/2, 95/4)$
38.	(i) Distance from the base of lamp(BD)= 1.2m x4s= 4.8metre
50.	(i) $\Delta ABE similar \Delta CDE$
	BE/DE = AB/CD = 4.8 + X / X = 3.6/0.9 THEN X = 1.6m
	Or
	AE/CE = BE/DE
	(4.8 + 1.6)/1.6 = 4
	AE = 4CE
	AC + CE = 4CE
	AC/CE = 3/1