Marking Scheme
 PRE BOARD -1

KVS LUCKNOW REGION 2023-24
CLASS-X SUBJECT- MATHEMATICS(STANDARD)-041 Max. Marks
80

1	OPTION C (20)
2	OPTION B (2)
3	OPTION C (38)
4	OPTION D (5)
5	OPTION B (2)
6	OPTION B (-3/7)
7	OPTION A (9)
8	OPTION A(3)
9	OPTION D (20)
10	OPTION B (12)
11	OPTION A (25)
12	OPTION A (50)
13	OPTION B (1/ل10)
14	OPTION C (128)
15	OPTION D (3:1)
16	OPTION C
17	OPTION D (0.993)
18	OPTION A (1/18)
19	OPTION A
20	OPTION C

SECTION B

Q. 21	CORRECT VALUES SUM OF ZEROES AND PRODUCT OF zeroes $K=7$	$1+1$
Q. 22	CORRECT RATIO 2 : 9 $Y=-4 / 11$	$1+1$
Q. 23	CORRECT SIMILARITY OF TRIANGLE CORRECT RELATION	$1+1$
Q. 24	CORRECT PROOF AND USING CORRECT THEOREM	$1+1$

Q. 25	$(\sin \theta+\cos \theta)^{2}=\sqrt{2} \times \sqrt{2}$ 1 We get $2 \sin \theta \cdot \cos \theta=1$ Now $\tan \theta+\cot \theta=\left(\sin ^{2} \theta+\cos ^{2} \theta\right) / \sin \theta \cdot \cos \theta$ $=2$	OR $(1+\cot \mathrm{A}-\operatorname{cosec} \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A})$
Using correct identity Correct Proof		

SECTION C

$$
=\text { Area of sector OAYB }- \text { Area of } \triangle \mathrm{OAB}
$$

Now, area of the sector OAYB $=\frac{120}{360} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2}=462 \mathrm{~cm}^{2}$
For finding the area of $\triangle \mathrm{OAB}$, draw $\mathrm{OM} \perp \mathrm{AB}$ as shown in Fig. 11.7.
Note that $\mathrm{OA}=\mathrm{OB}$. Therefore, by RHS congruence, $\triangle \mathrm{AMO} \cong \triangle \mathrm{BMO}$.
So, M is the mid-point of $A B$ and $\angle A O M=\angle B O M=\frac{1}{2} \times 120^{\circ}=60^{\circ}$.
Let

$\mathrm{OM}=x \mathrm{~cm}$

So, from \triangle OMA,

$$
\frac{\mathrm{OM}}{\mathrm{OA}}=\cos 60^{\circ}
$$

or,

$$
\frac{x}{21}=\frac{1}{2} \quad\left(\cos 60^{\circ}=\frac{1}{2}\right)
$$

or,

$$
x=\frac{21}{2}
$$

So,

$$
\mathrm{OM}=\frac{21}{2} \mathrm{~cm}
$$

Also,

$$
\frac{\mathrm{AM}}{\mathrm{OA}}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

So,

$$
\mathrm{AM}=\frac{21 \sqrt{3}}{2} \mathrm{~cm}
$$

So, \quad area of $\Delta \mathrm{OAB}=\frac{1}{2} \mathrm{AB} \times \mathrm{OM}=\frac{1}{2} \times 21 \sqrt{3} \times \frac{21}{2} \mathrm{~cm}^{2}$

$$
\begin{equation*}
=\frac{441}{4} \sqrt{3} \mathrm{~cm}^{2} \tag{3}
\end{equation*}
$$

Therefore, area of the segment $\mathrm{AYB}=\left(462-\frac{441}{4} \sqrt{3}\right) \mathrm{cm}^{2}$ [From (1), (2) and (3)]

$$
=\frac{21}{4}(88-21 \sqrt{3}) \mathrm{cm}^{2}
$$

Since pack of playing have 52 cards, therefore $n(S)=52$
i) Let A : getting king of black colour

$$
n(A)=2
$$

$$
\mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{2}{52}=\frac{1}{26}
$$

ii) Let B : getting red colour or jack

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~B})=28 \\
& \mathrm{P}(\mathrm{~B})=\frac{n(B)}{n(S)}=\frac{28}{52}=\frac{7}{13}
\end{aligned}
$$

iii) Let C : getting not a face card

$$
n(C)=40
$$

$\mathrm{P}(\mathrm{C})=\frac{n(C)}{n(S)}=\frac{40}{52}=\frac{10}{13}$
OR

Total outcomes $=36$
(i) $1 / 4$
(ii) $1 / 6$
(iii) $7 / 18$

Class intervals	Frequency	Cumulative frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+x$
$300-400$	12	$19+x$
$400-500$	17	$36+x$
$500-600$	20	$56+x$
$600-700$	y	$56+x+y$
$700-800$	9	$65+x+y$
$800-900$	7	$72+x+y$
$900-1000$	4	$76+x+y$

It is given that $n=100$
So, $76+x+y=100$, i.e., $x+y=24$
The median is 525 , which lies in the class $500-600$
So, $l=500, f=20, \quad c f=36+x, \quad h=100$

Using the formula :

$$
\text { Median }=l+\left(\frac{\frac{n}{2}-\mathrm{cf}}{f}\right) h \text {, we get }
$$

$$
525=500+\left(\frac{50-36-x}{20}\right) \times 100
$$

i.e.,
$525-500=(14-x) \times 5$
i.e.,
$25=70-5 x$
i.e.,
$5 x=70-25=45$
So,

$$
x=9
$$

Therefore, from (1), we get $9+y=24$
i.e,

$$
y=15
$$

36. (i)
$A+3 d=1800, a+7 d=2600$
$D=200$ and $a=1200$
(ii) $a_{12}=a+11 d=3400$
(iii) $S_{10}=21000$ OR
$\mathrm{S}_{\mathrm{n}}=31200, \mathrm{a}=1200, \mathrm{~d}=200, \mathrm{n}=$?
On putting value $S=n / 2\{2 a+(n-1) d\}$
$N=13$
37. (i) Position of red flag= $(2,1 / 4 \times 100)=(2,25)$
(ii) Distance between two flags $=\sqrt{ } 36+25=\sqrt{ } 61$
(iii) Position of the blue flag $=(5,22.5)$

OR
Ratio between Green and Red Flag is $1: 3$
Required pont $=(7 / 2,95 / 4)$
38. (i) Distance from the base of lamp(BD)=1.2m $\times 4 \mathrm{~s}=4.8 \mathrm{metre}$ (ii) $\triangle \mathrm{ABE}$ similar $\quad \triangle \mathrm{CDE}$
$B E / D E=A B / C D=4.8+X / X=3.6 / 0.9$ THEN $X=1.6 \mathrm{~m}$
Or
$\mathrm{AE} / \mathrm{CE}=\mathrm{BE} / \mathrm{DE}$
$(4.8+1.6) / 1.6=4$
$A E=4 C E$
$A C+C E=4 C E$
$A C / C E=3 / 1$

