KENDRIYA VIDYALAYA SANGATHAN

LUCKNOW REGION

PRE-BOARD-1 EXAMINATION
Class- X Time: 3 Hrs Sub- Maths BASIC (241)
M.M :80

GENERAL INSTRUCTIONS:

1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

	SECTION A	
SN	Section A consists of 20 questions of 1 mark each.	MARKS
1	Which of the following is not irrational? (A) $(3+\sqrt{7})$ (B) $(3-\sqrt{ } 7)$ (C) $(3+\sqrt{ } 7)(3-\sqrt{ } 7)$ (D) $3 \sqrt{ } 7$	1
2	The product of a non-zero rational and an irrational number is (A) always rational (B) rational or irrational (C) always irrational (D) zero	1
3	The number of zeroes, the polynomial $\mathrm{p}(\mathrm{x})=(\mathrm{x}-2)^{2}-4$ can have, is (A) 1 (B) 2 (C) 3 (D) 0	1
4	If a pair of linear equations is consistent, then the lines will be (A) parallel (B) always coincident (C) intersecting or coincident (D) always intersecting	1
5	$(\sec A+\tan A)(1-\sin A)=$ (A) $\sec \mathrm{A}$ (B) $\sin \mathrm{A}$ (C) $\operatorname{cosec} \mathrm{A}$ (D) $\cos \mathrm{A}$	1
6	The roots of quadratic equation $2 x^{2}+x+4=0$ are: (A) Positive and negative (B) Both Positive (C) Both Negative (D) No real roots	1
7	The distance of the point $\mathrm{P}(-6,8)$ from the origin is (A) 10 units (B) $2 \sqrt{ } 7$ units (C) 8 units (D) 6 units	1
8	The fourth vertex D of a parallelogram ABCD whose three vertices are $\mathrm{A}(-2,3)$, $\mathrm{B}(6,7)$ and $\mathrm{C}(8,3)$ is (A) $(0,1)$ (B) $(0,-1)$ (C) $(-1,0)$ (D) $(1,0)$	1
9	A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length PQ is : (A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{ } 119 \mathrm{~cm}$	1

10	D and E are the midpoints of side AB and AC of a triangle ABC , respectively and $\mathrm{BC}=6 \mathrm{~cm}$. If $\mathrm{DE} \\| \mathrm{BC}$, then the length (in cm) of DE is: (A) 2.5 (B) 3 (C) 5 (D) 6	1	
11	If triangles ABC and DEF are similar and $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$, the perimeter of triangle ABC is: (A) 22 cm (B) 20 cm (C) 21 cm (D) 18 cm	1	
12	A girl calculates that the probability of her winning the first prize in a lottery is 0.08. If 6000 tickets are sold, how many tickets has she bought? (A) 40 (B) 240 (C) 480 (D) 750	1	
13	For a frequency distribution, mean, median and mode are connected by the relation (a) mode $=3$ mean -2 median (b) mode $=2$ median -3 mean (c) mode $=3$ median -2 mean (d) mode $=3$ median +2 mean	1	
14	The minute hand of a clock is 7 cm long. Find the area of the face of the clock described by minute hand in 15 minutes. (a) 154 Sq cm (b) 38.5 Sq cm (c) 105 Sq cm (d) 77 Sq cm	1	
15	If the perimeter and the area of a circle are numerically equal, then the radius of the circle is (A) 2 units (B) π units (C) 4 units (D) 7 units	1	
16	Two identical solid cubes of side a are joined end to end. Then the total surface area of the resulting cuboid is (A) $12 a^{2}$ (B) $10 a^{2}$ (C) $8 a^{2}$ (D) $11 \mathrm{a}^{2}$	1	
17	The pair of equations $y=0$ and $y=-7$ has: (A) one solution (B) two solutions (C) infinitely many solutions (D) no solution	1	
18	If $\sqrt{3} \sin \theta-\cos \theta=0$ and $0^{\circ}<\theta<90^{\circ}$, then the value of θ is a) 30° b) 60° c) 90° d) 45°	1	
19	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): $\sin 45^{\circ}=\cos 45^{\circ}$ Statement $R($ Reason) : $\sin \theta=\cos \theta$ for all values of θ. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason(R) is true.	1	
20	Statement A (Assertion): For any two positive integers p and q, $\operatorname{HCF}(p, q) \times \operatorname{LCM}(p, q)=p \times q$ Statement R(Reason) : If the HCF of two numbers is 5 and their product is 150 , then their LCM is 30. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1	

	(c) Assertion (A) is true but reason(R) is false. (d) Assertion (A) is false but reason(R) is true.				
	SECTION B				
	Section B consists of 5 questions of 2 marks each.				
21	Solve $2 x+3 y=11$ and $2 x-4 y=-24$ and hence find the value of ' m ' for which $y=m x+3$. OR Find the zeroes of the quadratic polynomial $x^{2}+7 x+10$, and verify the relationship between the zeroes and the coefficients	2			
22	Prove that the length of tangents of a circle from an exterior point are equal.	2			
23	D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA}^{2}=\mathrm{CB} . C D$ OR In the figure, $\mathrm{DE} \\| \mathrm{OQ}$ and $\mathrm{DF} \\| \mathrm{OR}$, show that $\mathrm{EF} \\| \mathrm{QR}$.	2			
24	If $\sin \mathrm{A}=3 / 4$, Calculate $\cos \mathrm{A}$ and $\tan \mathrm{A}$.	2			
25	A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding: (i) minor sector (ii) major sector (Use $\pi=3.14$).	2			
	SECTION C				
	Section C consists of 6 questions of 3 marks each.				
26	Prove that $3+2 \sqrt{5}$ is irrational.	3			
27	Find the roots of the following equations: $x+\frac{1}{x}=2, x \neq 0$ OR A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.	3			
28	A quadrilateral ABCD is drawn to circumscribe a circle. Prove that $\mathrm{AB}+\mathrm{CD}=$ $\mathrm{AD}+\mathrm{BC}$	3			
29	Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0, \mathrm{c} \neq 0$.	3			
30	Prove the following identities, where the angles involved are acute angles for which the expressions are defined $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec \mathrm{A}+\tan \mathrm{A}$ OR $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{(\tan A+\cot A)}$	3			
31	A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be	3			

