www.educationobserver.com Kerala STD IX Second Term exam 2023

PHYSICS ANSWER KEY
BIJU MATHEW

KERALA IInd TERM Exam 2023- PHYSICS ANSWER KEY

N	Ans	swer				
	$6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$					
	Adhesive force					
	ON					
	Joule					
	a· relative density is the density compared to a reference substance (usually water) under standard conditions·					
b. Density of ice is greater than Kerosene, So it will sink.						
,		a. The area under velocity-time graph gives the displacement				
	b. The size of the graph increases as (we decrease the scale·				
	Every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.					
		·				
		by the action of an external force·				
	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times 6 = 6 \times 10 \times 208$	by the action of an external force: $x G = \frac{Gx10x20}{d2} = d= 5m$				
0	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times G = G \times 10 \times 208$ b. $F = \frac{Gx10x10}{4} = 25$ Work done by the applied force is possible.	by the action of an external force $x G = \frac{Gx10x20}{d2} = d = 5m$ esitive and work done by fractional				
0	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times G = G \times 10 \times 208$ b. $F = \frac{Gx10x10}{4} = 25$ Work done by the applied force is positive	by the action of an external force $x G = \frac{Gx10x20}{d2} = d = 5m$ esitive and work done by fractional				
	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times G = G \times 10 \times 208$ b. $F = \frac{Gx10x10}{4} = 25$ Work done by the applied force is positive a. Graph (2) - motion of a body	by the action of an external force $x G = \frac{Gx10x20}{d2} = d = 5m$ esitive and work done by fractional				
	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times G = G \times 10 \times 208$ b. $F = \frac{Gx10x10}{4} = 25$ Work done by the applied force is positive a. Graph (2) - motion of a body b. Graph (3)- a truly falling body	by the action of an external force: $x G = \frac{Gx10x20}{d2} = d = 5m$ exitive and work done by fractional without acceleration				
	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, E	by the action of an external force: $x G = \frac{Gx10x20}{d2} = d = 5m$ In external without acceleration without acceleration				
0	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, E	by the action of an external force $x G = \frac{Gx10x20}{d2} = d = 5m$ In the positive and work done by fractional without acceleration In the position of the p				
	unless compelled to change its state E a. $F = \frac{Gm1m2}{d2}$, $8 \times 6 = G \times 10 \times 208$ b. $F = \frac{Gx10x10}{4} = 25$ Work done by the applied force is positive a. $Graph(2)$ - motion of a body b. $Graph(3)$ - a truly falling body Inertia of rest Dust comes out of a hanging mat when beaten with a stick	by the action of an external force $x G = \frac{Gx10x20}{d2} = d = 5m$ In the positive and work done by fractional without acceleration In the position of the p				

	b· Electrical energy → mechanical energy
13	a· Impulse- momentum principle b· Any two applications

	Airbags in cars reduce the impact of a collision, China and glass wares are packed with soft material when transported, During a pole vault jump, the impact is reduced by falling on foam bed.
14	a· Honey
	b · Viscosity
	It is the characteristic property of a liquid to oppose the relative motion between its different layers
15	a· Momentum before collision = m ₁ u ₁ + m ₂ u ₂ = (6 × 8) + (4 × 4) = 48+16=
	64Kg m∕s
	b. Momentum after collision = 64 Kg m/s
	c. Law of Conservation of momentum
16	a· mass x g_{earth} = 1752 x 10 = 17520 N
	b. mass $x g_{moon} = 1752 \times 1.62 = 2803.2N$
17	a. An aero plane flying at certain height
	b. Stretched bow and wound spring - potential energy
18	a· Centripetal force, fc= $mv^2/R = 30X36/30 = 60N$ m= $40+10=50$ Kg = $50 \times 6 \times 6 = 60 N$
	b. To reduce centripetal force
	a· Reduce the speed or mass of the body
	b. Increase the radius of the path
19	a· Instrument P- Common Balance
	b. In poles, the value g is more and weight becomes more

20	a. Zero, in free fall no reacting force is acting upward, and gravitational
	force is utilized to give acceleration to the object·
	b. Gravitational force = GM/ R ²

21	a· Potential energy is converted into kinetic energy
	b· Kinetic energy= K=1/2MV² m=200g, 200/1000 = 0·2 Kg
	$1/2X0\cdot2X0\cdot25X0\cdot25 = 0.00625 J$
	c· Work done = change in Kinetic energy = $^{\circ \cdot 0.00625 J}$ 6·25 × 10 $^{-}$
22	a· Velocity at 3 rd second = 6m/s and velocity at 9 th second =18 m/s
	$b \cdot Momentum$ of the car at 3^{rd} second = $800 \times 6 = 4800 \text{kg}$
	m/s Momentum of the car at 9^{th} second = $800x$
	18=14400kg m/s
	c. Rate of change of momentum of the car= $\frac{m(v-u)}{t} = \frac{800(18-6)}{6}$
	= 1600 N
	$d\cdot$ Rate of change of momentum of the car = Magnitude of force= rate of change of momentum = 1600N

_	_ _		
	-	- <u>-</u>	