www.educationobserver.com
 Kerala STD IX Second Term exam 2023

PHYSICS ANSWER KEY
BIJU MATHEW

KERALA IInd TERM Exam 2023- PHYSICS ANSWER KEY

QN	Answer
1	$6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
2	Adhesive force
3	ON
4	Joule
5	a. relative density is the density compared to a reference substance (usually water) under standard conditions. b. Density of ice is greater than Kerosene, So it will sink.
6	a. The area under velocity-time graph gives the displacement b. The size of the graph increases as we decrease the scale.
7	Every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
8	a. $\mathrm{F}=\frac{\mathrm{Gm} 1 \mathrm{~m} 2}{d 2}, 8 \times G=G \times 10 \times 208 \times G=\frac{\mathrm{G} \times 10 \times 20}{d 2}=d=5 \mathrm{~m}$ b. $F=\frac{G \times 10 \times 10}{4}=25$
9	Work done by the applied force is positive and work done by fractional force is negative
10	a. Graph (2) - motion of a body without acceleration b. Graph (3)- a truly falling body
11	Inertia of rest Inertia of motion
	Dust comes out of a hanging mat Athletes take a short run before when beaten with a stick doing a long jump
	Passengers standing in a bus tend to A fan continues its rotation for fall backwards when the bus some time even after it is switched suddenly starts moving forward off.
12	$a \cdot$ Electrical energy \rightarrow light and heat energies

	$b \cdot$ Electrical energy \rightarrow mechanical energy
13	$a \cdot$ Impulse- momentum principle $b \cdot$ Any two applications

	- Airbags in cars reduce the impact of a collision, China and glass wares are packed with soft material when transported, During a pole vault jump, the impact is reduced by falling on foam bed.
14	a. Honey b. Viscosity It is the characteristic property of a liquid to oppose the relative motion between its different layers
15	a. Momentum before collision $=m_{1} u_{7}+m_{2} u_{2}=$ $(6 \times 8)+(4 \times 4)=48+16=$ $64 \mathrm{Kg} \mathrm{m} / \mathrm{s}$ b. Momentum after collision $=64 \mathrm{Kg} \mathrm{m} / \mathrm{s}$ c. Law of Conservation of momentum
16	a. mass $\times g_{\text {earth }}=1752 \times 10=17520 \mathrm{~N}$ $b \cdot$ mass $\times g_{\text {moon }}=1752 \times 7.62=2803 \cdot 2 \mathrm{~N}$
17	a. An aero plane flying at certain height b. Stretched bow and wound spring - potential energy
18	$\begin{aligned} & \text { a. Centripetal force, } f c=m v^{2} / R=30 \times 36 / 30=60 \mathrm{~N} \\ & m=40+10=50 \mathrm{Kg} \\ & =50 \times 6 \times 6=60 \mathrm{~N} \end{aligned}$ b. To reduce centripetal force a. Reduce the speed or mass of the body b. Increase the radius of the path
19	a. Instrument P-Common Balance b. In poles, the value g is more and weight becomes more

20	$a \cdot$ Zero, in free fall no reacting force is acting upward, and gravitational force is utilized to give acceleration to the object. $b \cdot$

21	a. Potential energy is converted into kinetic energy b. Kinetic energy $=\quad K=1 / 2 M V^{2}$ $m=200 \mathrm{~g}, 200 / 1000=0.2 \mathrm{~kg}$ $1 / 2 \times 0.2 \times 0.25 \times 0.25==0.00625 \mathrm{~J}$ c. Work done $=$ change in Kinetic energy $=0.00625 \mathrm{~J}=6.25 \times 10^{-3}$
22	a. Velocity at $3^{\text {rd }}$ second $=6 \mathrm{~m} / \mathrm{s}$ and velocity at $9^{\text {th }}$ second $=18 \mathrm{~m} / \mathrm{s}$ b. Momentum of the car at $3^{\text {rd }}$ second $=800 \times 6=4800 \mathrm{~kg}$ m / s Momentum of the car at $9^{\text {th }}$ second $=800 \times$ $18=14400 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ c. Rate of change of momentum of the car $=\frac{m(v-u)}{t}=\frac{800(18-6)}{6}$ $=1600 \mathrm{~N}$ d. Rate of change of momentum of the car $=$ Magnitude of force= rate of change of momentum $=1600 \mathrm{~N}$

