SSLC Second Term Exam2023-24 Answer Key PHYSICS-EM

www.educationobserver.com

SSLC Second Term exam 2023-24 PHYSICS Answer Key

Qn No	Answer			
1	b. 60°			
2	d. both the magnitude and direction of current changes			
3	Plane mirror			
4	b. 50Hz	b. 50Hz		
5	Power			
6	a. Glow with maximum brightness- Circuit (ii) Least Brightness-m Circuit (iii)			
	b. In circuit 2 the Coil acts as just a resistor and it gives			
	maximum brightness.			
	In circuit 3 the coil is acting	·		
	1	voltage is minimised and the		
	1	serted soft iron core in solenoid		
	also result in self-induction	and back emt.		
7	a. Refraction			
0	b. Difference in optical density.			
8	Convex mirror	Concave mirror		
	Always form diminished	Can form real and virtual		
	images	images		
	Always form images	Can form a virtual and		
	between F and P	magnified image		
		than the object		
9	a. Flemings right hand rule			
	Fleming's Right Hand Rule states that if we arrange our			
	thumb, forefinger and middle finger of the right-hand perpendicular to each other, then the thumb points towards the direction of the motion of the conductor			
	relative to the magnetic	c field, the forefinger points		

	towards the direction of the magnetic field and the middle finger points towards the direction of the induced current. b. + AC	
10	a. Power in primary = power in secondary $\frac{PS}{24} = \frac{24}{34}$	
	Secondary current, Is = $\frac{PS}{VS} = \frac{24}{12} = 2 A$	
	b. Step Down Transformer	
11	 a. A three-pin plug's pin E makes contact with the earth line. This pin is now connected to the appliance's body. Electricity flows to the ground through the earth wire if the body comes into contact with an electric connection. The current increases when current flows to the ground through a low-resistance circuit. As a result of the increased heat created in the fuse wire, the fuse wire melts and the circuit is broken. This will safeguard both the instrument and the person who will be handling it. b. If possible, turn off the power source. If this is not possible, move the electric source away from you and the person using a dry, nonconducting object made of cardboard, plastic, or wood. 	
	If the person shows no signs of circulation, such as breathing, coughing, or movement, begin CPR.	
	Make every effort to keep the injured person warm.	
12	V= 200V, I=0.2 A R=V/I =200/0.2 =2000/2=1000 Ω When the wire is cut into two equal pieces R=1000/2 =500 Ω	

	In Parellel connection resistance is R= 500/2 = 250 Ω Power P= $\frac{V2}{R} = \frac{200X200}{250} = 160W$				
13	a. Vacuum < water < glass < diamond b. Refractive index of glass with respect to water, $\mu = \frac{Speed\ of\ Light\ in\ water}{Speed\ of\ Light\ in\ glass} = \frac{2.25X10^8}{2X10^8} = \frac{225}{200} = \frac{9}{8}$				
14	c. $\mu = \frac{Speed\ of\ Light\ in\ vacuum}{Speed\ of\ Light\ in\ medium}$ a. Concave mirror b. Principal focus, in order to produce parallel beams of light rays c. Convex mirror				
15		A Incandescent lamp	B tungsten	Ability to emit white light in white hot condition	
		Safety fuse	Alloy of tin and lead	Low melting point	
		Electric heater	nichrome	Ability to remain in red hot condition for a long time	
16	a. f= 15cm b. $V = \frac{uf}{u-f} = \frac{-15 X - 60}{-60 - (-15)} = 900/-45 = -20cm$ c. $m = \frac{hi}{ho} \frac{-v}{u} = \frac{-(-20)}{-60} = \frac{-1}{3}$ hi=m X ho = $\frac{-1}{3}$ x12 = $-4cm$				
17	 a. P- diaphragm, Q- voice coil b. Electromagnetic induction c. The principle used in a simple microphone is the movement of a current loop in a changing magnetic field creates an induced emf. 				
	electi mem Wher	nple microphone wo romagnetic induction brane attached to a n sound waves hit the oil of wire to move i	on. It consists of a coil of wire, form se diaphragm, it v	diaphragm or a ing a current loop. ibrates and causes	

	movement of the current loop in the magnetic field induces an electromotive force (emf) or voltage across the coil. This induced voltage is proportional to the sound wave variations, effectively converting sound energy into electrical signals. These electrical signals can then be amplified and transmitted as audio signals .
18	a. Air B Glass 460 460 N b. Total internal reflection.
	c. optical fibers, used in endoscopes and telecommunications. automotive rain sensors, Optical fingerprinting
19	a. Watt-hour meter b. $\frac{power\ X\ total\ hours}{1000}$ Consumption by LED lamps = $\frac{20\ X\ 5\ X\ 5}{1000} = \frac{5000}{1000} = 0.5\ unit$ Consumption by Laptop = $\frac{1\ X\ 50\ X\ 2}{1000} = \frac{100}{1000} = 0.1\ unit$ Total Energy Consumption per day = 0.5+ 0.1=0.6 units Total Energy Consumption for one month = $30\times0.6=18$ units.
20	 a. Step down transformer b. Mutual induction c. The reason for making the secondary windings thicker is, while working on a transformer, AC current will be passing through both windings. These coils will be having a resistance and due to heating there will be energy loss. This loss can be reduced by using wires with lower resistance for winding. The voltage will be higher in the secondary coil so there is a chance for more loss. So, to

reduce the temperature we use thicker wires having low
resistivity.