## Samagra Shiksha Kerala

 Half Yearly Evaluation 2023-24
## SSLC MATHHEMATICS

## English Version.

Detailed Solutions with Questions.

## Prepared by Dr.V.S. RaweendraWath.

## Question: 1

a) Which among the following coordinates is a point on the $x$ axis?

$$
(0,-1),(2,5),(3,0),(-5,4)
$$

b) Find the distance from this point to the origin.

Solution:-

# a) $(3,0)$ [ $y$ coordinate $=0$ be the $\mathbf{x}$ - axis]. <br> b) Distance to the origin $=3$. 

....................................................

## Question: 2.

In the figure $\angle C B E=105^{\circ}$.
a) Find $\angle A D C$.
b) $\angle A D C+\angle A B C=$ $\qquad$


## Solution:-

Given $\angle \mathrm{CBE}=105^{\circ}$,
a) $\angle \mathrm{ADC}=105^{\mathbf{0}}$. [ Exterior angle be equal to the interior opposite angle].
b) $\angle \mathrm{ADC}+\angle \mathrm{ABC}=105+75=180^{\circ}$.

$$
\text { [ } 180-105=75^{0} \text {, sum of linear pair] }
$$

$\qquad$

## Question: 3.

In the figure $\triangle P Q R$ is a right triangle.
a) What is the length of $P Q$ ?
b) $\angle Q R P=$ $\qquad$

$$
\left(30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}\right)
$$



Solution:-
a) given $\angle \mathrm{PQR}=\mathbf{9 0}^{\circ}$.
$\mathbf{P Q}=\sqrt{2^{2}-1^{2}}=\sqrt{4-1}=\sqrt{3}$.
[ Using Pythagoras].
b) Consider the angles be $30^{\circ}, 60^{\circ}, 90^{\circ}$. ie., 1: $\sqrt{ } 3: 2$.
$\angle \quad \mathrm{QPR}=60^{\circ}$.

Angles: $30^{\circ}, 60^{\circ}, 90^{\circ}$

Sides :


## Question: 4.

All edges of a square pyramid are equal. Total sum of length of all its edges is 48 centimetres. Find the base area of the pyramid.

## Solution:-

## Given, sum of all edges $=48 \mathrm{~cm}$. ie., $8 \mathrm{a}=48$ <br> $\mathrm{a}=\frac{4 \mathcal{B}}{8}=6 \mathrm{~cm}$.

Hence the base area of the pyramid $=\mathbf{a}^{2}$

$$
\text { ie., } 6^{2}=36 \mathrm{~cm}^{2}
$$

## Question: 5.

Draw a circle of radius 3 centimetres. Draw a tangent to the circle from a point 7.5 centimetres away from the centre.

Solution:-

## Draw the figure.

 drosr

Prepared by $D_{r}$. RaceendraNath.

## Question: 6.

Na the figure $\angle A B C=90^{\circ}, \angle A C B=45^{\circ}$,
$\mathrm{AB}=7$ centimetres.
a) Find AC.

b) If a square is drawn with the side AC , find its area. Solution:-
Given $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{ACB}=45^{\circ}$. So, $\angle A=180-(90+45)=45^{\circ}$.
a) We know, hear the angles are $45^{0}, 45^{0}, 90^{\circ}$.
ie., $1: 1: \sqrt{ } 2$.
. $A C=7 \sqrt{ } 2 \mathrm{~cm}$.

b) Area of the
square $=(A C)^{2}$

$$
=(7 \sqrt{ } 2)^{2}=49 \times 2=98 \mathrm{~cm}^{2} .
$$

## Question: 7.

The base edge of a square pyramid is 10 centimetres and its lateral edge is 13 centimetres.
a) What is the slant height of the pyramid?
b) Find the lateral surface area of the pyramid.

Solution:-
Base edge of a square pyramid (a) = 10 cm .

Lateral edgw $(\mathbf{e})=13 \mathrm{~cm}$.
a) Slant height ,

Here, $\mathbf{l}^{2}=\mathbf{e}^{2}-\left(\frac{a}{2}\right)^{2}$. $=13^{2}-\left(\frac{10}{2}\right)^{2}$

$$
=169-25=144
$$

. $1=\sqrt{ } 144=12 \mathrm{~cm}$.
b) LSA of the pyramid = 2al

$$
\begin{aligned}
& =2 \times 10 \times 12 \\
& =240 \mathrm{~cm}^{2} .
\end{aligned}
$$

## Question: 8.

In the figure, sides of the rectangle $P Q R S$ are parallel to the axes.
a) Write the coordinates of Q and S .
b) Find the length of $P Q$.


Solution:-
a) $Q=(9,3)$, and $S=(4,7)$.
b) Length of $P Q=|9-4|=5$.
............................................................

## Question: 9.

In an arithmetic sequence the difference between $5^{\mathrm{h}}$ term and $8^{\mathrm{h}}$ term is 12 .
a) What is the difference between $15^{\mathrm{m}}$ term and $9^{\mathrm{m}}$ term ?
b) If $11^{\text {di }}$ term of this sequence is 45 , find the $20^{\text {dit }}$ term.

Solution:-

$$
\begin{aligned}
& \text { a) } X_{8}-X_{5}=3 d=12, d=\frac{12}{3}=4 \text {. } \\
& X_{15}-X_{9}=6 d=2 \times 3 d=2 \times 12=24 . \\
& \text { OR } \\
& \mathbf{x}_{15}-\mathrm{X}_{9}=\mathbf{6 d} \\
& =6 \times 4=24 . \\
& \text { b) } X_{20}=X_{11}+9 d=X_{11}+3 \mathbf{x 3 d} \\
& =45+3 \times 12=81 \\
& \text { OR. }
\end{aligned}
$$

Given $x_{11}=45$.

$$
\begin{aligned}
x_{20} & =x_{11}+(20-11) d \\
& =45+9 d \\
& =45+9 \times 4 \\
& =45+36=81 .
\end{aligned}
$$

## Question: 10.

In the figure coordinates of three vertices of a parallelogram are given.
a) Write the coordinates of the fourth vertex.
b) Find the coordinate of the point of intersection of the diagonals of the parallelogram.


Solution:-
a) Fpurth vertex (9+5, 8+6-4)

$$
=(14-3,14-4)
$$

$$
=(11,10)
$$

b) Point of intersection of diagonals
$=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{5+9}{2}, \frac{8+6}{2}\right)$

$$
=\left(\frac{14}{2}, \frac{14}{2}\right)=(7,7)
$$

## Question: 11.

A box contains 30 balls of white, black and red colours. Probability of getting a white ball is $\frac{7}{30}$ and probability of getting a red ball is $\frac{3}{10}$.
a) What is the number of white balls?
b) What is the probability of getting a black ball from the box?
c) What is the probability of getting a red ball, if 3 red balls are taken out from the box?

Solution:-
Given, total number of ball = 30 .
Probability of white ball $=\frac{7}{30}$.
a) Number of white balls $=7$.
b) Probability of black ball

$$
=1-\left(\frac{7}{30}+\frac{3}{10}\right)=\frac{14}{30}
$$

## OR

$$
\begin{aligned}
& =\frac{30-\mathcal{W}-\mathcal{R}}{30}=\frac{30-7-9}{30} \\
& =\frac{30-16}{30}=\frac{14}{30}
\end{aligned}
$$

c) Probability of red ball $=\frac{3}{10}=\frac{9}{30}$.

Number of red ball $=9$.
If 3 red balls taken out, number of red balls in the box $=9-3=6$. $S$
Now total number of balls in the box

$$
=30-3=27
$$

: The probability of red balls $=\frac{6}{27}$. ...........................................................

## Question: 12.

In the arithmetic sequence $6,10,14, \ldots$
a) What is the common difference ?
b) How many consecutive terms of the sequence starting from the first term gives the sum 510 ?

## Solution:-

Given sequence $=6,10,14$,
a) Com man difference $=10-6=4$.
b) $\mathrm{Sum}=510$.
ie., $\frac{d}{2} \mathbf{n}^{2}+\left(\mathbf{f}-\frac{d}{2}\right) \mathbf{n}=510$.
$\frac{4}{2} \mathbf{n}^{2}+\left(6-\frac{4}{2}\right) \mathbf{n}=510$.
$2 n^{2}+4 n=510$ dividing by 2
ie., $\mathbf{n}^{2}+2 n=255$.
[ Using square completion method] $\mathbf{n}^{2}+2 \mathbf{n}+1=255+1$.
$(n+1)^{2}=256$.
$n+1=\sqrt{ } 256$
n $+1=16$
$\mathrm{n}=16-1=15$.
${ }^{\cdot}$ The number be 15. OR

$$
\begin{aligned}
x_{n} & =d n+(f-d) \\
& =4 n+(6-4) \\
& =4 n+2
\end{aligned}
$$

Sum $=\frac{n}{2}\left[\mathbf{x}_{1}+\mathbf{x}_{\mathrm{n}}\right]$

$$
=\frac{n}{2}[6+4 n+2]
$$

$$
=\frac{n}{2}[4 n+8]
$$

$$
=\frac{n}{2} \times 4[n+2]
$$

$$
=2 n^{2}+4=510 \text { dividing by } 2
$$

ie., $\mathbf{n}^{2}+2 \mathbf{n}=255$.
[ Using square completion method] $n^{2}+2 n+1=255+1$.
$(\mathrm{n}+1)^{2}=256$.
$\mathrm{n}+1=\sqrt{ } \mathbf{2 5 6}$
n + $\mathbf{1}=16$

## $\mathrm{n}=16$ - $1=15$. <br> ${ }^{\bullet}$ : The number be 15.

Question: 13.
In the figure $C(3,0)$ is the centre of the circle and radius of the circle is 5 units.
a) Write the coordinates of the points that the circle cuts the $x$ axis.
b) Find the co-ordinate of P.


Solution:-
Given center $\mathbf{C}(3,0)$
Radius $=5$.

$$
\text { a) } \mathbf{B}=(3+5,0)
$$

$(8,0)$.
$A=(3-5,0)$
$=(-2,0)$
b) We know that $\mathrm{OA} x \mathrm{OB}=\mathrm{OP}^{2}$.

$$
\begin{gathered}
2 \times 8=O P^{2} . \\
16=O P^{2} .
\end{gathered}
$$

.: $O P=\sqrt{ } 16=4$.
Hence the co-ordinate of $P=(0,4)$.
.........................................drvsr

## Question: 14.

A person standing 80 metres away from a tower sees the top of the tower at an angle of elevation $45^{\circ}$. From the $\delta$ pposite direction, another person sees the top of the tower at an angle of elevation $50^{\circ}$. (The tower and the persons are on the same line)

| Angle | $\sin$ | $\cos$ | $\tan$ |
| :---: | :---: | :---: | :---: |
| $40^{\circ}$ | 0.64 | 0.77 | 0.84 |
| $50^{\circ}$ | 0.77 | 0.64 | 1.19 |

## a) Draw a rough figure. <br> b) Find the height of the tower. <br> c) Find the distance between the two persons.

Solution:-
a)

b) In $\triangle$ ADC angles are $45^{\circ}, 45^{0}, 90^{\circ}$. ie., 1: 1: $\sqrt{ }$ 2.
since $\mathrm{OA}=80$.
:- Height of the tower $=80 \mathrm{~m}$.
c) In $\Delta$ DBC,
$\tan \mathrm{A}=\frac{o p p \cdot \text { sid e }}{\text { adj } \cdot \text { sid e }}$
$\tan 40=\frac{\mathcal{D \mathcal { B }}}{\mathcal{D C}}$; ie., $\mathbf{0 . 8 4}=\frac{\mathcal{D} \mathcal{B}}{80}$,
$D B=0.84 \times 80=67.20$.
Distance $\mathrm{n} / \mathrm{w}$ the two persons
$=A D+B D=80+67.23=147.23 \mathrm{~m}$ .............................................drvsr

## Question: 15.

In the figure O is the centre of the circle. PQ is a tangent at the point B .
$\angle A B P=70^{\circ}, \mathrm{AC}=\mathrm{BC}$.
a) What is $\angle A B Q$ ?

b) Find the measures of all angles of triangle $A B C$.

Solution:-
Given $\angle \mathbf{A B P}=70^{\circ}, \mathbf{A C}=\mathbf{B C}$.
a) $\angle \mathrm{ABQ}=180-70=110^{\circ}$.
b) $\angle \mathrm{C}=\angle \mathrm{B}=110^{\circ}$.
[ Angle b/w tangent and chord be equal in the opposite arc].
So $\mathbf{A C}=\mathbf{B c}$
Hence $\triangle$ OAB be an isosceles
$\angle A=\angle B$

$$
=\frac{180-110}{2}=\frac{70}{2}=35^{0} .
$$

.drvsr.

## Question: 16.

A tent is in the shape of a cone with base radius 20 metres and height 15 metres.
a) What is the slant height of the tent?
b) How much squaremetres of canvas is needed to make the tent?
c) Calculate the total cost of the canvas needed to make the tent at the rate of rupees 60 per squaremetre.
Solution:-
Given radius $=20 \mathrm{~m}, \mathrm{~h}=\mathbf{1 5 m}$
$\mathbf{l}^{2}=\mathbf{r}^{2}+\mathbf{h}^{2}$.
$=20^{2}+15^{2}=400+225=625$.
$1=\sqrt{ } 625=25$
.: slant height $=25 m$.
b) required canvas $=\pi r l$
$=\pi \times 20 \times 25$
$=500 \pi \mathrm{~m}^{2}$
c) Total cost $=500 \pi \times 60=$ Rs. $94200 /-$ .......................................drvsr

Question: 17.
The coordinates of three vertices of $\triangle A B C$ are $\mathrm{A}(1,2), \mathrm{B}(3,6), \mathrm{C}(5,5)$.
a) Find the length of the sides of the triangle.
b) What kind of triangle is $\triangle A B C$ ?
(equilateral triangle, isosceles triangle, right triangle)
Solution:-
Given vertices of the triangle
A(1,2), B(3,6), C(5,5).
a) Length of $A B^{2}=(3-1)^{2}+(6-2)^{2}$

$$
=4+16=20
$$

$A B=\sqrt{ } 20$
Length of $\mathrm{BC}^{2}=(5-3)^{2}+(5-6)^{2}$

$$
=4+1=5
$$

$$
\mathbf{B C}=\sqrt{ } 5
$$

Length of $A C^{2}=(5-1)^{2}+(5-2)^{2}$

$$
\begin{aligned}
& =16+9=25 \\
\text { AC } & =\sqrt{ } 25 \\
\text { b) Hear, } \mathrm{AB}^{2}+\mathrm{BC}^{2}=20+5 & =25 \\
& =\mathrm{AC}^{2} .
\end{aligned}
$$

## Hence this is a right triangle.

Question: 18.
In the figure, $O$ is centre of the circle.
Central angle of arc PQR is $100^{\circ}$.
a) What is the central angle of arc PSR ? $\left(210^{\circ}, 180^{\circ}, 260^{\circ}, 200^{\circ}\right)$
b) Find $\angle P S R$ and $\angle P Q R$.
c) $\angle O P S+\angle O R S=$ $\qquad$


Solution:-
Given $\angle \mathbf{P O R}=100^{\circ}$.
a) Center angle of arc PSR

$$
=360-100=260^{\circ} .
$$

# 100 <br> b) $\angle P S R=\frac{100}{2}=50^{\circ}$. <br> $\angle P Q R=180-50=130^{\circ}$. <br> c) $\angle O P S+\angle O R S=\angle P S R=50^{\circ}$ <br> ..................................................drVSr 

Question: 19.
A cone of base radius 12 centimetres and height 15 centimetres is melted and recast into spheres of radius 3 centimetres, find the number of spheres can be made by melting the cone.

Solution:-
Given radius of cone $=12 \mathrm{~cm}$
Height of cone $=15 \mathrm{~cm}$
Radius of the spear $=3 \mathrm{~cm}$.
Number of spheres

$$
=\frac{\text { V olume of con } \mathrm{e}}{\mathrm{~V} \text { olume of a spher } \mathrm{e}}
$$

Volume of cone $=\frac{1}{3} \pi r^{2} h$.

$$
=\frac{1}{3} \times \pi \times 12 \times 12 \times 15
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$.

$$
=\frac{4}{3} \times \pi \times 3^{3}
$$

Number of spheres
$=\frac{1}{3} \times \pi \times 12 \times 12 \times 15 \div$ $\frac{4}{3} \times \pi \times 3^{3}$
$=20$.
-••••••••••••••••••••••••••••••••••••••••••••d IVSY

## Question: 20.

a) In the figure O is the centre of the circle.

Sides of triangle ABC are tangents of the circle.

What is $\angle P O Q$ ?
b) Draw a circle of radius 2.5 centimetres. Draw a triangle of angles $55^{\circ}$ and $70^{\circ}$ with
 all its sides touching the circle.

Solution:-
a) $\angle \mathrm{POQ}=180-55=125^{\circ}$.
b) Draw
its by
yourself.

-••••••••••••••••••••••••••••••••••••••....... .drVSK

## Question: 21.

In a circle the coordinates of the end points of a diameter are $(2,8),(10,14)$.
a) Find the coordinates of the centre of the circle.
b) Find the radius of the circle.
c) Is $(9,15)$ is a point on the circle ? Why?

Solution:-
Given points, $(2,8),(10,14)$.
a) Center $=\left(\frac{x_{1}+x_{i 2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{2+10}{2}, \frac{8+14}{2}\right)$
$=\left(\frac{12}{2}, \frac{22}{2}\right)=(6,11)$
b) Radius $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(6-2)^{2}+(11-8)^{2}}$
$=\sqrt{4^{2}+3^{2}}=\sqrt{16+9}$
$=\sqrt{25}=5$.
c) Find the distance b/w the center $(6,11)$ and the given point $(9,15)$

$$
\text { ie., } \begin{aligned}
& \sqrt{+(9-6)^{2}+(15-11)^{2}} \\
& =\sqrt{3+4^{2}}=\sqrt{9+16} \\
= & \sqrt{25}=5 .
\end{aligned}
$$

Here we can see that distance 5 be equal to the radius 5 . Hence the given point $(9,15)$ be on the circle.

## Question: 22.

Draw a triangle of sides 7 centimetres, 6 centimetres and 5 centimetres. Draw its incircle. Measure and write the radius.

Solution:-


## Question: 23

In the figure $A B C D$ is a rectangle.
$\angle B E D=120^{\circ}, \angle D B E=30^{\circ}$,
$\mathrm{DE}=8$ centimetres.
a) $\angle A E D=$
b) What is the length of a AD ?
c) What is the length of BE ?
d) Find the area of the rectangle $A B C D$.

Solution:-
Given $\angle B E D=120^{\circ}, \angle D B E=30^{\circ}$
DE = 8cm.
a) $\angle \mathrm{AED}=180-120=60^{\circ}$.
b) In $\triangle A E D$ angles are
$30^{\circ}, 60^{\circ}, 90^{\circ}$. and the ratios are
$1: \sqrt{ } 3: 2$.

$$
\text { ie., } \frac{A D}{D E}=\frac{\sqrt{3}}{2}
$$

$\frac{A D}{8}=\frac{\sqrt{3}}{2}$
$A D=\frac{\sqrt{3}}{2} \times 8=4 \sqrt{ } 3 \mathrm{~cm}$.
Also $\mathrm{AE}=\frac{8}{2}=4 \mathrm{~cm}$
c) In $\triangle B E D$, the angles are $30^{\circ}, 30^{\circ}, 120^{\circ}$. Hence it 9 s an isosceles triangle.
So, $B E=D E$.
ie., $B E=8 \mathrm{~cm}$.
d) Area of the rectangle $=I \times b$ ie., $A B \times A D$
$A E+E B \times A D$
$4+8 \times 4 \sqrt{ } 3=12 \times 4 \sqrt{ } 3$ $=48 \sqrt{ } 3 \mathrm{~cm}^{2}$
....................................... ${ }^{\text {... }}$

## Question: 24.

a) Draw the axes and mark the points $P(4,5), Q(2,0), R(5,0)$
b) If a parallelogram PQRS is drawn with ' S ' as forth vertex. Write the coordinates of ' S '.

Solution:-
a)
b) $(5+2,5)$
$=(7,5)$.

.................................................

## Question: 25.

In the figure $\mathrm{AB}, \mathrm{AC}$ are the tangents of the circle.
The line $P Q$ touches the circle at $R$.
$\angle A P Q=70^{\circ}, \angle B A C=50^{\circ}$
a) What is $\angle B P Q$ ?
b) Find $\angle O P Q, \angle O Q P$,

c) Is quadrilateral APOQ cyclic? Why?

Solution:-
$\angle A P Q=70^{\circ}, \angle B A C=50^{\circ}$.
a) $\angle B P Q=180-70=110^{\circ}$.
[ Linear pair]
b) $\angle \mathbf{O P Q}=\frac{110}{2}=55^{\circ}$.

$$
\begin{aligned}
\angle A Q P & =180-(50+70) \\
& =180-120=60^{\circ} .
\end{aligned}
$$

$\angle C P Q=180-60=120^{\circ}$.
$\angle O Q P=\frac{120}{2}=60^{\circ}$.
c) Here $\angle A P O+\angle A Q O$

$$
\begin{aligned}
& =(70+55)+(60+60) \\
& =125+120=245^{\circ} .
\end{aligned}
$$

We can see that the sum of opposite angles are not

## supplementary. Hence the quadrilateral is not cyclic.

 .................................................drvsr.Question: 26.
The first term of an arithmetic sequence is 12 . Sum of first three terms is 51 .

a) What is the second term of the arithmetic sequence?
b) Find the $8^{\text {th }}$ term of the arithmetic sequence.
a) Find the sum of first 15 terms.

Solution:-
Given $x_{1}=12$.
Sum of first three terms $=51$.
a) $x_{1}+x_{2}+x_{3}=51$. ie., mid term ( $x_{2}$ )

$$
=\frac{\text { Sum }}{\text { Number of terms }}=\frac{51}{3}=17 .
$$

# b) $d=X_{2}-X_{1}=17-12=5$ 

$X_{8}=X_{1}+7 d=12+7 \times 5=47$.
c) Sum the first 15 term [ Number of terms $\times x_{n}$ ] $=15 \mathbf{X} X_{8}=15 \mathbf{X} 47=705$. Question: 27.

1. A toy is in the shape of a hemisphere attached to the base of a cone. Common radius is 8 centimetres. Total height of the toy is 23 centimetres.
a) What is the height of the cone ?
b) Find the slant height of the cone.
c) Calculate the surface area of the toy.


Solution:-

# Given common radius $=8 \mathrm{~cm}$. <br> Total height $=23 \mathrm{~cm}$. 

a) Height of the cone $=23-8$
$=15 \mathrm{~cm}$.
b) $\mathbf{l}^{2}=\mathbf{h}^{2}+\mathbf{r}^{2}$
= $152+82$
$=225+64$
= 289
$\mathrm{l}=\sqrt{ } \mathbf{2 8 9}=17 \mathrm{~cm}$.
c) TSA = Curved surface area of the hemisphere + Curved surface area of the cone
$\Rightarrow \pi r l+2 \pi r^{2}$
$=\pi \times 8 \times 17+2 \times \pi \times 82$
$=136 \pi+128 \pi=264 \pi \mathrm{~cm}^{2}$.
.........................................drvsr
Question: 28.

The figure $A B C D$ is a rhombus. Sides of the rhombus are equal to $A C$.
a) Find the length of AC.
b) Write the coordinates of the midpoint of $A C$.
c) Find the coordinates of $B$ and $D$.


Sofution:-
а) $A C=\mid 8-2)=6$.
b) Midpoint $=\left(\frac{12+8}{2}, \frac{0+0}{2}\right)$
[ Using midpoint formula]
$=\left(\frac{10}{2}, \frac{0}{2}\right)=(5,0)$.
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
c) ie $\angle \mathrm{BAC}=60^{\circ}$
$\mathrm{AM}=3 \mathrm{BM}=3 \sqrt{ } 3$ ie $\mathrm{B}(5,3 \sqrt{ } 3)$


D (5, - $3 \sqrt{ } \sqrt{ }$ )

## Question: 29.

## Look at the number pattern given below.

$$
\left.\left.\begin{array}{rl}
1^{3} & =1^{2} \\
=\left(\frac{1 \times 2}{2}\right)^{2} \\
1^{3}+2^{3} & =(1+2)^{2} \\
1^{3}+2^{3}+3^{3} & =\left(\frac{2 \times 3}{2}\right)^{2} \\
1^{3}+2^{3}+3^{3}+4^{3} & =(1+2+3)^{2}
\end{array}\right)=\left(\frac{3 \times 4}{2}\right)^{2}\right)
$$

Sum of the cubes of the consecutive natural numbers starting from 1 are shown above. Analysing the number pattern answer the questions.
a) Write the next line.
b) If $1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+7^{3}=(1+2+3+\ldots+x)^{2}$, find $x$.
c) If $1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+8^{3}=\left(\frac{8 \times y}{2}\right)^{2}$, find $y$.
d) $1^{3}+2^{3}+3^{3}+$ $\qquad$ $+100^{3}=$
e) $1^{3}+2^{3}+3^{3}+$ $+n^{3}=L$
Solution:-
a) $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}$
$=(1+2+3+4+5)^{2}$
$=\left(\frac{5 \times 6}{2}\right)^{2}$.
b) $x=7$.
c) $y=9$.

$$
\begin{aligned}
& \text { d) }(1+2+3+4+\ldots .)^{2} \text { OR }\left(\frac{100+101}{2}\right)^{2} \\
& \text { e) }(1+2+3+4+\ldots . n)^{2} \text { OR }\left(\frac{n(n+1)}{2}\right)^{2} \\
& \text {.............................................. }
\end{aligned}
$$

## Samagra Shiksha Kerala

 Half Yearly Evaluation 2023-24 SSLC MATHHEMATICS English Version. Detailed Solutions with Questions. Prepared by Dr.V.S. RaweendraNath.