MARKING SCHEME

Secondary School Examination, 2023 SCIENCE (Subject Code-086)

[Paper Code:31/4/1]

	Maximum Marks:		
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION A		
1.	(c)	1	1
2.	(b)	1	1
3.	(b)	1	1
4.	(d)	1	- 1
5.	(b)	1	1
6.	(c)	1	1
7.	(c)	1	1
8.	(b)	1	1
9.	(b)	1	1
10.	(a)	1	1
11.	(a)	1	1
12.	(d)	1	1
13.	(b)	1	1
14.	(c)	1	1
15.	(b)	1	1
16.	(d)	1	1
17.	(a)	1	1
18.	(d)	1	1
19.	(c)	1	1
20.	(b)	1	1
	SECTION B		
21.	(A) (i) • Copper (II) chloride / Copper chloride / Cupric chloride / CuCl ₂	1/2	
	colour- blue-green.	1/2	
	(ii) $CuO + 2IIC1 \rightarrow CuCl_2 + H_2O$	1	
	OR	953	
	(B) X : Sodium Chloride / NaCl	1/2	
	Y: Hydrogen /H ₂	1/2	
	Z: Chlorine / Cl ₂	1/2	
	B : Bleaching powder / CaOCl ₂	1/2	2
22.	(A) (i) Cerebellum / Hind brain	1/2	
22.	(ii) Medulla / Hind brain	1/2	
	(iii) Cerebrum / Forebrain	1/2	
	(iv) Medulla / Hind brain	1/2	
	OR		
	(B) Tip of shoot / tip of root	1/2	
	(i) Shoot/stem	1/2	
	(ii) Shoot / stem	1/2	
	(iii) Roots	1/2	2

) Brings the blood containing nitrogenous waste into the kidney. i) Removal of urine / passing out of urine ii) Filtration of blood v) Selective reabsorption of useful materials. The plant kept in dark is unable to carry out photosynthesis and due to absence of oxygen it cannot respire. But the plant kept in light is able to photosynthesize converting CO2 into oxygen which it can use for respiration. (i) Myopia / Short Sightedness (ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens /Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in iomagnification.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2
ii) Filtration of blood v) Selective reabsorption of useful materials. The plant kept in dark is unable to carry out photosynthesis and due to absence of oxygen it cannot respire. But the plant kept in light is able to photosynthesize converting CO2 into oxygen which it can use for respiration. (i) Myopia / Short Sightedness (ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens /Diverging Lens OR Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1 1 1 1/2 1/2 1/2 1/2 1	2
v) Selective reabsorption of useful materials. The plant kept in dark is unable to carry out photosynthesis and due to absence of oxygen it cannot respire. But the plant kept in light is able to photosynthesize converting CO2 into oxygen which it can use for respiration. (i) Myopia / Short Sightedness (ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens /Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1 1 1 1/2 1/2 1/2 1/2 1	2
The plant kept in dark is unable to carry out photosynthesis and due to absence of oxygen it cannot respire. But the plant kept in light is able to photosynthesize converting CO2 into oxygen which it can use for respiration. (i) Myopia / Short Sightedness (ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens /Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1 ½ ½ ½ ½ ½ ½ 1	
But the plant kept in light is able to photosynthesize converting CO ₂ into oxygen which it can use for respiration. (i) (i) Myopia / Short Sightedness (ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens / Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	Y ₂ Y ₂ Y ₂ Y ₂ Y ₂ Y ₃ 1	
(ii) Myopia / Short Sightedness (ii) Excessive curvature of eye lens Elongation of eye ball (iii) Concave lens / Diverging Lens OR 3) Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. In space, there is no scattering of light due to absence of particles. (no atmosphere) st these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1/2 1/2 1/2 1	2
(ii) • Excessive curvature of eye lens • Elongation of eye ball (iii) Concave lens /Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1/2 1/2 1/2 1	2
Elongation of eye ball (iii) Concave lens /Diverging Lens OR 3) Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. In space, there is no scattering of light due to absence of particles. (no atmosphere) sthese pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1/2 1/2	2
(iii) Concave lens /Diverging Lens OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1	2
OR 3) • Size of particles in the atmosphere is smaller than the wavelength of visible light, so they scatter light of shorter wavelengths i.e. blue. • In space, there is no scattering of light due to absence of particles. (no atmosphere) s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1	2
of visible light, so they scatter light of shorter wavelengths i.e. blue. In space, there is no scattering of light due to absence of particles. (no atmosphere) s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	1	2
particles. (no atmosphere) s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	25	2
s these pesticides are non biodegradable so they get concentrated at each absequent trophic level progressively & ultimately result in	52	
	2	2
SECTION C		
	1/2	
• To increase the conductivity of water	1/2, 1/2	
Hydrogen – cathode Oxygen – anode Anode: Cathode 1: 2 /Volume of hydrogen liberated at cathode is twice that of oxygen	1/2	
	990	
	3.72	
		3
	333	
	3375	
	1/2	
	- 2	2
	31	3
cilia.	1	
(a) Creates an acidic medium which facilitates the action of enzyme /	1/2	
(b) Digestion of proteins	1/2	
	1/.	
(a) Conversion of starch into sugar	/2	
or		
B) (i) Blood goes through the heart twice during each cycle	1	
-/ (-/ Bree shough the fleat twice during country of		
	liberated at anode. i) • White silver chloride turns grey • Decomposition reaction / Photolytic Decomposition i) The acid must always be added slowly to water with constant stirring. ii) Sodium sulphate / Na ₂ SO ₄ pH = 7 iii) Dry HCl is unable to ionise / Due to absence of hydrogen ion or hydronium ion A) (i) Food enters through a specific spot with the help of movement of cilia. (ii) (a) Creates an acidic medium which facilitates the action of enzyme / kills microorganisms ingested with the food. (b) Digestion of proteins (c) Mixing the food thoroughly with digestive juices. / pushes food forward by peristalsis. (d) Conversion of starch into sugar	liberated at anode. i) • White silver chloride turns grey • Decomposition reaction / Photolytic Decomposition i) The acid must always be added slowly to water with constant stirring. i) Sodium sulphate / Na ₂ SO ₄ pH = 7 ii) Dry HCl is unable to ionise / Due to absence of hydrogen ion or hydronium ion A) (i) Food enters through a specific spot with the help of movement of cilia. (ii) (a) Creates an acidic medium which facilitates the action of enzyme / kills microorganisms ingested with the food. (b) Digestion of proteins (c) Mixing the food thoroughly with digestive juices. / pushes food forward by peristalsis. (d) Conversion of starch into sugar OR 3) (i) Blood goes through the heart twice during each cycle.

	efficient supply of oxygen to the body.	1	
	 It helps birds and mammals who have high energy needs and constantly use energy to maintain their body temperature. 	1	3
30.	(A) (i) It is a point on the principal axis of a diverging mirror from where the rays parallel to principal axis appear to diverge after reflection.	1	
	(ii) The distance between the pole and the principal focus of a mirror.	1	
	H-/-H	1	
	(B) $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $\frac{1}{v} = \frac{1}{f} + \frac{1}{u}$	1/2	
	$f = 15 \text{ cm}, u = -25 \text{ cm}, h = 10 \text{ cm}$ $\frac{1}{V} = \frac{1}{15 \text{cm}} + \frac{1}{.25 \text{cm}} = \frac{2}{75} = +\frac{1}{37.5}$	1/2	
	v – 37·5 cm	1	
	height of the image = $\frac{v}{u} \times \text{height}$ of the object = $\frac{37 \cdot 5}{-25 \text{ cm}} \times 10 \text{ cm}$	¥ ₂	
	h' = -15 cm	1/2	3
31.	• Focal length of lens, $f(m) = \frac{1}{p}$ P = +4.0 D	1/2	
	\Rightarrow f = $\frac{1}{+4 \text{ D}} = 0.25 \text{ m} = 25 \text{ cm}$	1/2	
	Real and inverted	1/2	
	• Magnification = -1	√2	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	[Deduct ½ mark if direction of rays is not marked]		3

	(A) (i) Alternating current can be transmitted over long distances without much loss of electric energy. (ii) Household supply – Alternating current (AC) Battery of Dry cell – Direct current (DC) (iii) It melts and breaks the circuit when a current of higher vaits rating flows through it. OR	1/2 1/2	
	Magnetic field lines Solenold B X	1	
	[Deduct ½ mark if direction of current or magnetic field is not marked] • Maximum at A	υ t	
	Magnetic field lines are crowded. / Magnetic field adds up due to 'n' number of turns of a soler • Minimum at B Magnetic field lines are far apart.	noid. 1/2 1/2 1/2	3
33.	Magnetic field adds up due to 'n' number of turns of a sole • Minimum at B	101d.	3

34. (A) (i)

(a)

1

(b)

1

(ii) • Isomers

 Because they have same molecular formula but different structures 1/2

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

$$\mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH}_3$$

1

$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

$$CH_3$$

[any one]

(iii)

Saturated Compounds	Unsaturated Compounds	
• C _n H _{2n+2}	C _n H _{2n} and C _n H _{2n-2}	
The number of H atoms is more than twice of 'C' atoms	The number of H atoms is either equal to or less than twice of C atom	
	(Any one)	

1

OR

(B) (i) H2 gas is evolved and Sodium ethoxide is formed.

 $2CH_3CH_2OH + 2Na \rightarrow 2CH_3CH_2ONa + H_2↑$

1/2

(Do not deduct marks for unbalanced equation)

(ii) The melting point of pure ethanoic acid is low (290K) and hence it freezes during winters in cold climates.

(iii) • Ethene is formed /

	$CH_3CH_2OH \xrightarrow{Hot Conc.} CH_2 = CH_2 + H_2O$ Ethene	1	
	• H ₂ SO ₄ – Dehydrating agent / removes water from Ethanol (iv) CH ₃ COOCH ₂ CH ₃ — NaOH → CH ₃ COO'Na ⁺ + CH ₃ CH ₂ OH	½ 1	
35.	(i) The two modes of asexual reproduction observed in hydra are: • Budding: A bud develops as an outgrowth. These buds develop into tiny individuals. When fully matured it detaches from the parent	½ , I	5
	body and become new independent individual. Regeneration: Hydra can be cut into any number of pieces and each piece grows into a complete organism.	1/2 , 1	
	(ii) Definition: When any vegetative part of plants like root, stem or leaf is used to grow new plants. Advantages: -	1	
	Plants can bear flowers and fruits earlier than those produced from seeds. It enables the propagation of plants such as banana, orange, rose and jasmine which have lost the capacity to produce seeds. The plants produced are genetically similar enough to the parent plant to have all the characteristics. (Any two)	V2, V2	5
36.	(i) Current flowing through a conductor is directly proportional to the potential difference. / Vα I / Iα V	1	
	Resistance Resistance		
		1	
	(Any one diagram) (ii)Since ammeter is connected in series, it should not increase the resistance of the circuit. / should allow maximum current to flow	1	
	through the circuit. (iii) • Series combination - Graph A Less slope and more resistance	1/2 1/2	
	Parallel combination - Graph B More slope and less resistance	1/2 1/2	5

	SECTI	IONE		
37.	(i)			
	$Mg : \left(\begin{array}{c} \times \overset{\text{Cl}}{\stackrel{\times}{\times}} \\ \times \overset{\times}{\times} \\ \times \overset{\times}{\stackrel{\times}{\text{Cl}}} \\ \times \overset{\times}{\times} \\ \times \overset{\times}{\times} \end{array} \right) = (Mg^2') \left[\begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{array} \right]$	××× CI× ×××]	1	
	(ii) • They are hard solids			
	They are soluble in water			
	They conduct electricity in aqueous	solution or molten state [Any other]	1/2, 1/2	
		[Any two]		
	(iii) (A) • Sodium atom has one electr		1	
	It attains its nearest noble gas contains.	configuration by losing this electron		
	forming Na ⁺ ion / Na →	$Na^+ + e^-$	1	
	2.8.1	2,8		
	- Contraction	stable		
	100	OR		
	(iii) (B) (i) Because movement of ions in the solid is not possible due to		1	
	their rigid structure.	•	1	
	(ii) H ₂ gas is liberated at catho	ode.		4
38.	(i) Sexual reproduction involves the fi which combines to the characters of (ii)	usion of male and female gametes, of both parents and cause variation.	1	
	F ₁ generation	F ₂ generation		
	• In F ₁ generation only the	In F ₂ generation both		
	dominant traits are expressed.	dominant and recessive traits are expressed.		
	It refers to the offspring/ plants	• It refers to the		
	resulting immediately from a cross	offspring/plants resulting from		
	between the first set of parents.	a cross among the plants of F ₁	1/21	
		generation.	1	
		[Any one]		
	(iii) (A) Because if a niche of population of organisms is altered, the			
	whole population could be wiped out. in this population they have some cha		2	
	[Alternate answer] If there is a population of bacteria livi temperature were to be increased by g would die, but a few variants resistant further. Thus, variations are useful for	dobal warming, most of the bacteria to heat would survive and grow		
		OR		

	(iii) (B) • Wrinkled, yellow	1/2	
	Round, green	1/2	
	If two or more traits are involved, their genes are independently inherited irrespective of the combination present in parents.	1	4
39.	(i) Refractive index of diamond = Speed of light in vacuum Speed of light in diamond	1/2	
	Speed of light in diamond = $\frac{3 \times 10^8 \text{ m/s}}{2 \cdot 42} = 1.23 \times 10^8 \text{ m/s}$	1/2	
	(ii) ∠r in carbon disulphide < ∠r in glass <∠r in water	1	
	(iii) (A)	1/2	
	(a) • Glass	7.2	
	The speed of light in water is more than the speed of light in glass. / Refractive index of glass is more than the refractive index of water.	1/2	
	(b) Light will enter from water to glass without bending (undeviated / straight) because in this case ∠i = 0; ∠r = 0.	1	
	OR		
	(iii) (B)		
	$n_{glass} = \frac{3}{2}$		
	$n_{\text{water}} = \frac{4}{3}$		
	$v_{glass} = 2 \times 10^8 m/s$		
	$n_{glass} = \frac{speed \ of \ light \ in \ vacuum(c)}{speed \ of \ lightglass(v_g)}$		
	$c = n_{glass} \times v_{glass}$		
	$= \frac{3}{2} \times 2 \times 10^8 m/s$		
	$= 3 \times 10^8 m/s$	1	
	$v_{\text{water}} = \frac{c}{n_{water}} = \frac{3 \times 10^8 m/s}{\frac{4}{2}}$		
	$=\frac{9}{4} \times 10^8 \text{ m/s or } 2.25 \times 10^8 \text{ m/s}$	1	4
