MARKING SCHEME

Secondary School Examination, 2023

SCIENCE (Subject Code-086)

[Paper Code: 31/2/1]

Maximum Marks: 80

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
	SECTION—A		
1.	(c)	1	1
2.	(c)	1	1
3.	(a)	1	1
4.	(b)	1	1
5.	(a)	1	1
6.	(c)	1	1
7.	(c)	1	1
8.	(b)	1	1
9.	(b)	1	1
10.	(c)	1	1
11.	(d)	1	1
12.	(a)	1	1
13.	(d)	1	1
14.	(b)	1	1
15.	(b)	1	1
16.	(c)	1	1
17.	(d)	1	1
18.	(a)	1	1
19.	(c)	1	1
20.	(b)	1	1
	SECTION—B		
21.	 Yellow precipitate of lead iodide is formed. Double displacement reaction / Precipitation reaction Pb (NO₃)₂ + 2KI - PbI₂ + 2KNO₃ 	1/2 1/2	
	7.7. (3.1.372 1.7.1.2.1.7.1.7.3	1	

OR		
(b) (i) • Oxygen is added to copper / Copper is oxidised	1/2	
• copper oxide / CuO	1/2	
(ii) By passing hydrogen gas over it	1	
Alternative answer		
(i) $2Cu + O_2 \xrightarrow{\Delta} 2CuO$		
(ii) $CuO + H_2 \longrightarrow Cu + H_2O$		2
(a) Birds and mammals have high energy needs to maintain their body temperature. The separation of oxygenated and deoxygenated blood allows a highly efficient supply of oxygen to maintain their body temperature.	1	-
(b) • Amphibians / reptiles;	1/,	
Temperature of the environment.	1/2	2
(a) Tt	1/2	
(b) Because only Dominant trait (Tall) is expressed in F1 generation / Tallness is dominant over recessive short trait.	1	
	120	٠
3:1	1/2	2
(a) • It is formed after a rain shower.	1/2	
It is always formed in a direction opposite to that of the Sun.	1/2	
Red	1	
OR		
(b) (i) The phenomenon of the change in direction of propagation of light caused by large sized molecules/ caused by colloidal particles.	1	
(ii) When sunlight passes through the atmosphere, fine particles in the air scatter blue light (shorter wavelengths) more than the red colour (longer wavelengths).	1	2
	 (b) (i) • Oxygen is added to copper / Copper is oxidised • copper oxide / CuO (ii) By passing hydrogen gas over it Alternative answer (i) 2Cu + O₂ → 2CuO (ii) CuO + H₂ → Cu + H₂O (a) Birds and mammals have high energy needs to maintain their body temperature. The separation of oxygenated and deoxygenated blood allows a highly efficient supply of oxygen to maintain their body temperature. (b) • Amphibians / reptiles; • Temperature of the environment. (a) Tt (b) Because only Dominant trait (Tall) is expressed in F1 generation / Tallness is dominant over recessive short trait. (c) F₂ generation – Tall : short 3 : 1 (a) • It is formed after a rain shower. • It is always formed in a direction opposite to that of the Sun. Red Violet OR (b) (i) The phenomenon of the change in direction of propagation of light caused by large sized molecules/ caused by colloidal particles. (ii) When sunlight passes through the atmosphere, fine particles in the air scatter blue light (shorter wavelengths) more than the red colour (longer) 	(b) (i) • Oxygen is added to copper / Copper is oxidised • copper oxide / CuO (ii) By passing hydrogen gas over it Alternative answer (i) 2Cu + O₂ → 2CuO (ii) CuO + H₂ — → Cu + H₂O (a) Birds and mammals have high energy needs to maintain their body temperature. The separation of oxygenated and deoxygenated blood allows a highly efficient supply of oxygen to maintain their body temperature. (b) • Amphibians / reptiles; • Temperature of the environment. (a) Tt (b) Because only Dominant trait (Tall) is expressed in F1 generation / Tallness is dominant over recessive short trait. (c) F₂ generation − Tall : short 3 : 1 (a) • It is formed after a rain shower. • It is always formed in a direction opposite to that of the Sun. Readindrop Sunlight OR (b) (i) The phenomenon of the change in direction of propagation of light caused by large sized molecules/ caused by colloidal particles. (ii) When sunlight passes through the atmosphere, fine particles in the air scatter blue light (shorter wavelengths) more than the red colour (longer 1)

	resistivity.		1	2
26.	An aquarium is a man-made ecosystem decomposers are not present, so needs ponds and lakes are natural ecosystems (Decomposers)		I i	2
	SECT	TION—C		
27.	 (a) White (b) Decomposition reaction / Photolytic de 2AgCl Sunlight 	Annual September 1997 (1997)	1/2 1/2	
450	(c) used in black and white photography;	AgBr / Silver Bromide	1/2, 1/2	3
28.		T/		
	Roasting	Calcination	5.000	
	1 It is carried out for sulphide ores.	It is carried out for carbonate ores.	1/2	
	2 Ore is heated in excess of air	Ore is heated in absence or limited supply of air.	1/2	
	$2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$ OR $2HgS + 3O_2 \longrightarrow 2HgO + 2SO_2$ OR $2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$	$Z_{nCO_{3}} \xrightarrow{\text{Heat}} Z_{nO} + CO_{2}$ OR $CaCO_{3} \xrightarrow{\text{heat}} CaO + CO_{2}$ OR $PbCO_{3} \xrightarrow{\text{heat}} PbO + CO_{2}$	1	
	Reduction with the help of carbon $ZnO + C \xrightarrow{Heat} Zn + CO$			
	Alternate answer			
	With the help of heat			
	2HgO(s) Heat 2 Hg ($1) + O_2(g)$		
	OR			
	Auto reduction / Heating with its ore			
	$2Cu_2O + Cu_2S \xrightarrow{\text{Heat}} 6C$	$\mathrm{u}\left(\mathrm{s}\right)+\mathrm{SO}_{2}(\mathrm{g})$		
		(or Any other)		3

29.	(a) (i) Glucose ———— Pyruvic acid /Pyruvate	1/2	
	In the cytoplasm	1/2	
	(ii) It is used as fuel for all activities in a cell / ATP is broken down giving rise to a fixed amount of energy which drive endothermic reactions in the cell.	1	
	(iii) When air is taken in and let out, the lungs always contain a residual volume of air so that there is sufficient time for the oxygen to be absorbed and for the carbon dioxide to be released / volume of air present in lung after exhalation.	1	
	OR		
	 (b) • A potted plant is taken and kept in dark for 24 hrs to destarch it. • Cover a part of a leaf of the plant with black paper to prevent that area from getting sunlight. 		
	 Keep the plant in sunlight for 24 hours. Pluck the leaf, remove the black paper, boil it in alcohol and dipthe leaf in iodine solution for starch test. The covered part showed no change in colour indicating that starch has not 		
	been produced due to the absence of sunlight. • The rest of the leaf turned blue black proving that starch is produced during photosynthesis and sunlight is essential for that.	½×6	3
30.	Adrenaline hormone; Adrenal gland	1/2, 1/2	
	Response-		
	 Heart beats faster resulting in supply of more oxygen to muscles Breathing rate increases 		
	Blood supply to digestive system and skin reduced.	1 1	
	Blood supply diverted to skeletal muscles.	1 × 2	3
	(Any 2)		3
31.	(a) Here $h = 3$ cm; $f = -12$ cm, $u = -18$ cm,	1/2	
	(Award full marks if data not written but calculations are correct)		
	(i)		
	$\mathbf{v} = ?, \mathbf{h'} = ?$	17	
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	
		1/2	
	$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-12 \text{ cm}} - \frac{1}{-18 \text{ cm}}$	/2	
	$\therefore v = -36 \text{ cm}$	1/2	

As human beings occupy the top level in any food chain, maximum concentration of these chemicals get accumulated in them.	1	3
(Alternate answer: If the child explains the question through food chain, credit marks.)		
 Some harmful substances like pesticides are used to protect crops. When these chemicals are washed down in the soil or water bodies, they are absorbed by plants along with water and minerals and by animals from water. When we consume these food items, the pesticides enter our body. 	2	
(iii) fuse wires (Any one)	1	3
(i) To use wires of proper insulation/proper rating (ii) Not connecting too many appliances to a single socket		
Preventive measure:		
(ii) Connecting too many appliances to a single socket. (iii) Accidental hike in supply voltage. (Any two points) (Any other)	1/2	
Two causes: (i) Contact between live and neutral wire/ short circuiting	1/2	
 Overloading: Overloading of an electrical circuit happens when an excessive amount of electric current flows through the wires. 	1	
Sign of magnification — + or positive	1/2	3
$P = \frac{100}{-10 \text{ cm}} = -10 \text{ D}$	1/2	
	1/2	
	1/2	
Reciprocal of focal length of lens in metre. (Any one)		
(b)• Power of lens : Ability of a lens to converge or diverge light rays falling on it / Degree of convergence or divergence of light achieved by a lens /	1	
4,9697	1/2	
, u.	72	
(ii)	17	
	h'=-\frac{v}{u} \times h h'=(-)\frac{-36 cm}{-18 cm} \times 3 cm = -6 cm OR (b)• Power of lens: Ability of a lens to converge or diverge light rays falling on it / Degree of convergence or divergence of light achieved by a lens / Reciprocal of focal length of lens in metre. (Any one) • It is diverging/concave lens • P = \frac{1}{f(m)} = \frac{100}{f(cm)} P = \frac{100}{10 cm} = -10 D • Sign of magnification = + or positive • Overloading: Overloading of an electrical circuit happens when an excessive amount of electric current flows through the wires. • Two causes: (i) Contact between live and neutral wire/ short circuiting (ii) Connecting too many appliances to a single socket. (iii) Accidental hike in supply voltage (Any two points) (Any other) • Preventive measure: (i) To use wires of proper insulation/proper rating (ii) Not connecting too many appliances to a single socket. (iii) fuse wires • Some harmful substances like pesticides are used to protect crops. When these chemicals are washed down in the soil or water bodies, they are absorbed by plants along with water and minerals and by animals from water. When we consume these food items, the pesticides enter our body. (Alternate answer: If the child explains the question through food chain,	h'=-\frac{v}{u} \times h h'=(-)\frac{-36cm}{-18cm} \times 3 cm = -6 cm OR (b)• Power of lens: Ability of a lens to converge or diverge light rays falling on it / Degree of convergence or divergence of light achieved by a lens / Reciprocal of focal length of lens in metre. (Any one) • It is diverging/concave lens • P = \frac{100}{f(cm)} = \frac{100}{f(cm)} P = \frac{100}{10 cm} = -10 D • Sign of magnification = + or positive • Overloading: Overloading of an electrical circuit happens when an excessive amount of electric current flows through the wires. • Two causes: (i) Contact between live and neutral wire/ short circuiting (ii) Connecting too many appliances to a single socket. (iii) Accidental hike in supply voltage (Any two points) (Any other) • Preventive measure: (i) To use wires of proper insulation/proper rating (ii) Not connecting too many appliances to a single socket. (iii) fuse wires • Some harmful substances like pesticides are used to protect crops. When these chemicals are washed down in the soil or water bodies, they are absorbed by plants along with water and minerals and by animals from water. When we consume these food items, the pesticides enter our body. (Alternate answer: If the child explains the question through food chain,

34.	(a) 'X' - CH ₃ COOH / Ethanoic Acid /	Acetic Acid	1/2	
	'Y' - C ₂ H ₅ OH / Ethanol	ricede Field	1/2	
	'Z' - CH3COOC2H5/ Ethyl Ethano	pate		
	• CH ₃ COOH + C ₂ H ₅ OH Acid catlyst		1/2	
	Esterification Reaction		1	
	2.500 Treatment reaction		1/2	
	• $CH_3COOC_2H_5 \xrightarrow{NaOH} C_2H_5$			
	• $CH_3COOC_2H_5 \xrightarrow{PRIOT} C_2H_5$	OH + CH ₃ COONa	1	
			1	
	Saponification Reaction		1/2	
	. It is used in the propagation of soon		/-	
	It is used in the preparation of soap.		1/2	
		OR		
	7	OK .		
	(b) (i) • Methane / CH ₄			
			1/2	
	H · · · C · · · · H			
	Covalent bond / Single Coval	ent bond/ Single bond		
	and the second			
	(ii) Biogas; Compressed Natural ga		1/2, 1/2	
	(iii) • Alkanes ; • C _n H	2n+2	1/2, 1/2	5
	(iv) Clean flame/blue flame		1	-,
35.	(a) (i)			
	Nervous Control	Hormonal Control		
	Messages are sent as an electrical impulse.	Messages are carried in the form of chemicals (hormone)		
	2. It is carried through Neurons.	2. It is carried through blood .		
	Nerve impulses produce rapid responses.	3. Hormones produce slow responses.		

	4. Nerve impu short lived re		4. Hormones produce long responses. (or Any other)	lasting Any three) 1×3	
(i		ving shoot is exposed wards the shaded side.	to unidirectional light, it resul	lts in auxin	
		n causes more growth	of shoot in the shaded side re of light.	sulting in the	
			OR		
(b) (i)	Disorder	Gland	7	
	(1)	Gigantism	Pituitary		
	(II)	Delay in Puberty	Ovary		
	(III)	Goitre	Thyroid	½ × 6	
		If the sugar level in the	e blood rises more insulin is p	Contraction 1	5
	014005-01				
36. (a) •	$\begin{array}{c c} A \\ \hline B \\ \hline 2F_1 \\ C_1 \end{array}$	M O F ₂ 2F ₂ C ₂ B' A'	1½	5
86. (а) •	2F ₁ F ₁	Deduct ½ mark for not mark		
36. (a) • • Magnificati	2F ₁ F ₁ C ₁	N A		
36. (• Magnificati	2F ₁ F ₁ C ₁	N A	king arrows)	

	Substitution Result $\frac{1}{v} = \frac{1}{v} + \frac{1}{f} = \frac{1}{-16 \text{ cm}} + \frac{1}{12 \text{ cm}} + \frac{+1}{48 \text{ cm}}$	1/2	
	or V = + 48 cm or v = + 48 cm	1/2	
	(Award full marks if data not written but calculations are correct)		
	(iv) $\mathbf{hi} = \frac{\mathbf{v}}{\mathbf{u}} \times \mathbf{h}_0$	1/2	
	$= \frac{+48 \text{ cm}}{-16 \text{ cm}} \times 2 \text{ cm}$		
	= - 6 cm	120	5
	Image is 6 cm in size.	1/2	
	SECTION—E		
37.	(a) (i) Groups A and B – less than 7	1/2	
	(ii) Group C – greater than 7	1/2	
	(b) pH paper and universal indicator.	1/2, 1/2	
	(c) • Copper vessel is tarnished due to formation of basic copper oxide. • Lemon juice being acidic react with copper oxide and the salt formed is washed away.	2	
	OR		
	(c) • An optimal pH is required for digestion.		
	Change in pH can cause tooth decay		
	 Animals and plants defend themselves through change in pH. 		
	Survival of aquatic life becomes difficult when pH of river water becomes	1×2	
	low.		
	(or any other) (Any two)		4
38.	(a) Leishmania – Binary fission ; Plasmodium – Multiple fission	1/2, 1/2	
	(b) Sexual reproduction leads to more variations which are useful for ensuring the survival of a species.	1	
	(c) (i) sugar solution provides nutrients for growth and multiplication whereas water does not do.	1	
	(ii) Moisture is required for the growth of Rhizopus.	1	
	OR		
	(c) • Spirogyra		
	Fragmentation – Spirogyra simply breaks up into smaller pieces upon	1/2	
	maturation. Each piece grows into a new individual.	1/2, 1	4

	<u> </u>		
39.	(a) • Both have same reading / A ₁ = A ₃	1/2	
	Both are connected in series	1/2	
	(b) Reading of $A_2 = \frac{1}{4}A$ as current is equally divided in the four identical		
	resitors . /Reading of $A_2 = \frac{1}{4}$ times Reading of A_3 . / A_2 =0.25 A / A_2 < A_3		
	(c) $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$ / $R_p = \frac{R}{n}$	1	
	$\frac{1}{R_p} = \frac{1}{3\Omega} + \frac{1}{3\Omega}$ $R_p = \frac{3}{2}\Omega$	1/2	
	V = I R	1/2	
	$V_1 = 1A \times \frac{3}{2} \Omega = \frac{3}{2} V = 1.5V$	1/2	
	OR	1/2	
	$\frac{1}{R_p} = \frac{1}{3\Omega} + \frac{1}{3\Omega}$		
	$\therefore R_p = \frac{3}{2} \Omega$		
	$\frac{1}{R_p} = \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega}$	1/2	
	$\therefore R_{p_2} = 1 \Omega$	1/2	
	$\frac{1}{R_p} = \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega} + \frac{1}{3\Omega}$	72	
	$\therefore R_{p_3} = \frac{3}{4} \Omega$		
	$\therefore R = R_{p_1} + R_{p_2} + R_{p_3} = \left(\frac{3}{2} + 1 + \frac{3}{4}\right)\Omega = \frac{13}{4}\Omega / 3.25\Omega$	1/2	
		1/2	4
