MARKING SCHEME MATHEMATICS (Subject Code-041) (PAPER CODE: 30/5/1)

Q. No.	EXPECTED OUTCOM	ES/VALUE POINTS	Marks
		SECTION A	
		ltiple choice questions (MCQs) and question ition-Reason based questions of 1 mark each	
1.	The number of polynomials	having zeroes –3 and 5 is :	
	(a) only one	(b) infinite	
	(c) exactly two	(d) at most two	
Sol.	(b) Infinite		1
2.	The pair of equations ax + lines, where a, b are integers	2y = 9 and 3x + by = 18 represent parallel , if:	į
	(a) a = b	(b) $3a = 2b$	
	(c) 2a = 3b	(d) ab = 6	
Sol.	(d) ab = 6		1
3.	The common difference of the	e A.P. whose n^{th} term is given by $a_n = 3n + 7$,	
	(a) 7	(b) 3	
	(c) 3n	(d) 1	

	(d) 3 units	1
8.	In the given figure, AB = BC = 10 cm. If AC = 7 cm, then the length of BP is: $\begin{array}{c} B \\ \end{array}$	
	(a) 3.5 cm (b) 7 cm	
	(c) 6·5 cm (d) 5 cm	
Sol.	(c) 6·5 cm	1
9.	Water in a river which is 3 m deep and 40 m wide is flowing at the rate of 2 km/h. How much water will fall into the sea in 2 minutes? (a) 800 m^3 (b) 4000 m^3 (c) 8000 m^3 (d) 2000 m^3	
	2 km/h. How much water will fall into the sea in 2 minutes ? ${\rm (a)} 800 \; {\rm m}^3 \qquad {\rm (b)} 4000 \; {\rm m}^3$	1
Sol.	2 km/h. How much water will fall into the sea in 2 minutes ? (a) 800 m^3 (b) 4000 m^3 (c) 8000 m^3 (d) 2000 m^3	1
9. Sol.	$2~\rm km/h.$ How much water will fall into the sea in 2 minutes ? (a) $800~\rm m^3$ (b) $4000~\rm m^3$ (c) $8000~\rm m^3$ (d) $2000~\rm m^3$ (c) $8000~\rm m^3$	1
Sol.	$2~km/h.$ How much water will fall into the sea in 2 minutes ? (a) $800~m^3$ (b) $4000~m^3$ (c) $8000~m^3$ (d) $2000~m^3$ (c) $8000~m^3$ If the mean and the median of a data are 12 and 15 respectively, then its mode is :	1

Sol.	(c) – 32		1
15.	Two coins are tossed tog	ether. The probability of getting at least or	ne tail
	(a) 1	(b) $\frac{1}{2}$	
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	
	(c) $\frac{3}{4}$	(d) 1	
ol.	(c) $\frac{3}{4}$		1
6.	In the given figure, AC a	and AB are tangents to a circle centered at 0	O. If
	\angle COD = 120°, then \angle Ba	AO is equal to :	
	В		
	В	\	
	A O	D	
	120	9)	
	~		
	(a) 30°	(b) 60°	
	(c) 45°	(d) 90°	
	189701 397001	000000	
ol.	(a) 300		1
01.	(a) 30°		1
7.	Which of the following a	numbers <i>cannot</i> be the probability of happ	pening
	of an event?		
	(a) 0	(b) $\frac{7}{0.01}$	
	30 39	0.01	
	(c) 0·07	(d) $\frac{0.07}{2}$	
		(d) <u>3</u>	
Sol.	(b) $\frac{7}{0.01}$		1

	2, then the mean of the data:	
	(a) decreases by 2	
	(b) remains unchanged	
	(c) decreases by 2n	
	(d) decreases by 1	
ol.	(a) decreases by 2	1
	Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).	
	(c) Assertion (A) is true, but Reason (R) is false.	
	(d) Assertion (A) is false, but Reason (R) is true.	
9.	Assertion (A): If the points A(4, 3) and B(x, 5) lie on a circle with centre	
To to	O(2, 3), then the value of x is 2.	
	Reason (R): Centre of a circle is the mid-point of each chord of the circle.	
ol.	(c) Assertion (A) is true, but Reason (R) is false	1
0.	Assertion (A): The number 5^n cannot end with the digit 0, where n is a natural number.	
	Reason (R): Prime factorisation of 5 has only two factors, 1 and 5.	

If every term of the statistical data consisting of n terms is decreased by

18.

	SECTION B	
	SECTION B	
	This section comprises of very short answer (VSA) type questions of 2 marks each.	
21(a).	The line segment joining the points $A(4, -5)$ and $B(4, 5)$ is divided by the point P such that $AP : AB = 2 : 5$. Find the coordinates of P.	
Sol.	$AP : AB = 2 : 5 \Rightarrow AP : PB = 2 : 3$	1/2
	2 3	
	A(4,-5) P(x,y) B(4,5)	
	$x = \frac{8+12}{5} = 4$, $y = \frac{10-15}{5} = -1$	1
	Point P is (4, – 1)	$\frac{1}{2}$
	OR	
21(b).	Point $P(x, y)$ is equidistant from points $A(5, 1)$ and $B(1, 5)$. Prove that $x = y$.	
Sol.	$PA^2 = PB^2 \implies (x-5)^2 + (y-1)^2 = (x-1)^2 + (y-5)^2$	1
	\Rightarrow x = y	1

22.	In the given figure, PT is a tangent to the circle centered at O. OC is perpendicular to chord AB. Prove that $PA \cdot PB = PC^2 - AC^2$.	
Sol.	$PA \cdot PB = (PC - AC) \cdot (PC + BC)$	1
	$= (PC - AC)(PC + AC) \qquad [AC = BC]$	1/2
		$\frac{1}{2}$
	$= PC^2 - AC^2$	2
3.	Using prime factorisation, find HCF and LCM of 96 and 120.	
d.	96 = 2 x 2 x 2 x 2 x 2 x 3	$\frac{1}{2}$
	$=2^5\times 3$	2
	120 = 2 x 2 x 2 x 3 x 5	1
	$=2^3 \times 3 \times 5$	$\frac{1}{2}$
	$= 2^{-} \times 3 \times 5$	1
	HCF = 24	1/2
	LCM = 480	$\frac{1}{2}$
		2
4.	Find the ratio in which y-axis divides the line segment joining the points	

ol.	A(5,-6) $P(0,y)$ $B(-1,-4)$	
	Let the point of division be $P(\theta,y)$ which divides AB in the ratio K : $\label{eq:continuous} 1$	$\frac{1}{2}$
	$0 = \frac{-K+5}{K+1} \implies K = 5$	1
	Ratio is 5:1	$\frac{1}{2}$
5(a).	If $a\cos\theta + b\sin\theta = m$ and $a\sin\theta - b\cos\theta = n$, then prove that $a^2 + b^2 = m^2 + n^2$.	
ol.	$m^2 + n^2 = (a \cos \theta + b \sin \theta)^2 + (a \sin \theta - b \cos \theta)^2$	1/2
	$= a^2(\cos^2\theta + \sin^2\theta) + b^2(\sin^2\theta + \cos^2\theta)$	1
	$=\mathbf{a^2}+\mathbf{b^2}$	1/2
	OR	
5(b).	Prove that : $\sqrt{\frac{\sec A - 1}{\sec A + 1}} + \sqrt{\frac{\sec A + 1}{\sec A - 1}} = 2 \csc A$	
ol.	LHS = $\frac{\sqrt{\sec A - 1}}{\sqrt{\sec A + 1}} + \frac{\sqrt{\sec A + 1}}{\sqrt{\sec A - 1}}$	
	$=\frac{\sec A - 1 + \sec A + 1}{\sqrt{\sec^2 A - 1}}$	1

K

	$= \frac{2 \sec A}{\tan A}$	$\frac{1}{2}$
	= 2 cosec A = RHS	$\frac{1}{2}$
	SECTION C	
	This section comprises of short answer (SA) type questions of 3 marks each.	
26(a).	Prove that $\sqrt{3}$ is an irrational number.	
Sol.	Let $\sqrt{3}$ be a rational number.	
	$\therefore \sqrt{3} = \frac{p}{q}$, let p & q be co-primes and $q \neq 0$	1/2
	$3q^2 = p^2 \Longrightarrow p^2$ is divisible by $3 \Longrightarrow p$ is divisible by 3	
	\Rightarrow p = 3a, where 'a' is some integer (i)	1
	$9a^2 = 3q^2 \implies q^2 = 3a^2 \implies q^2$ is divisible by $3 \implies q$ is divisible by 3	2005
	\Rightarrow q = 3b, where 'b' is some integer (ii)	1/2
	(i) and (ii) leads to contradiction as 'p' and 'q' are co-primes.	
	$\therefore \sqrt{3}$ is an irrational number.	1
	OR	
26(b)	The traffic lights at three different road crossings change after	
	every 48 seconds, 72 seconds and 108 seconds respectively. If they	
	change simultaneously at 7 a.m., at what time will they change together next?	

Sol.	LCM = 432	2
	i.e. $\frac{432}{60} = 7 \min 12 \sec$.	
	\Rightarrow traffic lights will change simultaneously again at 7 : 7 : 12 a.m.	1
27.	If p^{th} term of an A.P. is q and q^{th} term is p , then prove that its n^{th} term is $(p+q-n)$.	
Sol.	$a_p = a + (p-1)d = q$ (i)	1 2
	$a_q = a + (q - 1)d = p$ (ii)	$\frac{1}{2}$
	Solving (i) and (ii)	32.00
	d = -1, $a = q + p - 1$	$\frac{1}{2}+\frac{1}{2}$
	$a_n = (q + p - 1) + (n - 1)(-1) = q + p - n$	1
28(a).	In the given figure, CD is the perpendicular bisector of AB. EF is perpendicular to CD. AE intersects CD at G. Prove that $\frac{CF}{CD} = \frac{FG}{DG}$.	
	CD DG	
	$\bigvee_{\mathbf{A}}$	

	A ALE ·· A CEB	
	$\Rightarrow \frac{AL}{CL} = \frac{EL}{BL} $ (i)	1
	Also \triangle CLM \sim \triangle ALB	
	$\Rightarrow \frac{AL}{CL} = \frac{AB}{CM}$	1
	$\Rightarrow \frac{AL}{CL} = \frac{CD}{CM} \qquad \{AB = CD\} \underline{\hspace{1cm}} (ii)$	$\frac{1}{2}$
	Using (i) and (ii)	2
	$\frac{EL}{BL} = \frac{2CM}{CM}$	
	⇒EL = 2BL	$\frac{1}{2}$
29.	Two people are 16 km apart on a straight road. They start walking at the same time. If they walk towards each other with different speeds, they will meet in 2 hours. Had they walked in the same direction with same speeds as before, they would have met in 8 hours. Find their walking speeds.	
ol.	Let walking speeds be x km/hr. and y km/hr. (x > y)	
	ATQ, 2x + 2y = 16	1
	and $8x - 8y = 16$	1
	Solving to get $x = 5$, $y = 3$	$\frac{1}{2} + \frac{1}{2}$
	Speeds are 5 km/hr. 3 km/hr.	

Sol.

 \triangle ALE \sim \triangle CLB

	Prove that :								
	$\frac{\tan}{1-\cos}$	$\frac{\theta}{\cot \theta} + \frac{\theta}{1 - \theta}$	$\frac{\cot \theta}{-\tan \theta} =$	1 + sec	θ cosec θ)			
Sol.	$LHS = \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}}$								1
	$= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)}$ $= \frac{\sin^3 \theta - \cos \theta}{\sin \theta \cos \theta}$		$\frac{\cos^2 \theta}{\theta(\cos \theta - \sin \theta)}$	n θ)					1
	$=\frac{\sin^2\theta+\cos^2}{\sin\theta}$		<u>s θ</u>						$\frac{1}{2}$
	$=\frac{1}{\sin \theta \cos \theta} +$	1							
	$\sin \theta \cos \theta$ $= 1 + \csc \theta$		RHS						1/2
31.		sec θ = 1		requency	distribut	ion:			1/2
31.	= 1 + cosec θ	sec θ = 1	ollowing f			ion:	50 – 55	55 – 60	1/2
31.	= 1 + cosec 0	$sec \theta = 1$	ollowing f				50 - 55 3	55 – 60 4	1/2
	= 1 + cosec 0 Find the mea	$\sec \theta = 1$ In of the following section is a second of the following second in the following second	ollowing f	35 – 40 16	40 – 45 6	45 – 50			1/2
	= 1 + cosec 0 Find the mea	$\begin{array}{c} \sec \theta = 1 \\ \cos \theta = 1 \\ \sin \theta = 1 \\$	30 – 35 22	35 – 40 16	40 – 45	45 – 50 5	3		1/2
	= 1 + cosec θ Find the mea Classes Frequency C.I.	$sec \theta = 1$ on of the following section of th	30 – 35 22	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$	45 – 50 5 fu – 42	3		1/2
	Find the mea	$sec \theta = 1$ on of the following section of th	30 – 35 22 f 14	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$ $- 3$	45 – 50 5 fu – 42	3		For
	Find the mean Classes Frequency C.I. 25 - 30 30 - 35	sec θ = 1 n of the for 25 - 30 14 x 27.5 32.5	30 – 35 22 f 14 22	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$ $- 3$ $- 2$ $- 1$ 0	45 - 50 5 fu - 42 - 44 - 16	3		For correct
	= 1 + cosec 6 Find the mea Classes Frequency C.I. 25 - 30 30 - 35 35 - 40	sec θ = 1 n of the for 25 - 30 14 x 27.5 32.5 37.5	30 – 35 22 f 14 22 16	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$ $- 3$ $- 2$ $- 1$ 0 1	45 - 50 5 fu - 42 - 44 - 16 0 5	3		For correct table
	= 1 + cosec 6 Find the mea Classes Frequency C.I. 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55	x 27.5 32.5 42.5	14 22 16 6 5 3	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$ $- 3$ $- 2$ $- 1$ 0 1 2	fu - 42 - 44 - 16 0 5 6	3		For correct
31. Sol.	= 1 + cosec 6 Find the mean Classes Frequency C.I. 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50	x 27.5 32.5 37.5 42.5 47.5	30 – 35 22 f 14 22 16 6 5	35 – 40 16	$40 - 45$ 6 $= \frac{x - 42.5}{5}$ $- 3$ $- 2$ $- 1$ 0 1	45 - 50 5 fu - 42 - 44 - 16 0 5	3		For correct table

Mean = $42.5 - \frac{79}{70} \times 5 = 36.86$ SECTION D This section comprises of long answer (LA) type questions of 5 marks each. 32. One observer estimates the angle of elevation to the basket of a hot air balloon to be 60°, while another observer 100 m away estimates the angle of elevation to be 30°. Find: (a) The height of the basket from the ground. The distance of the basket from the first observer's eye. (b) The horizontal distance of the second observer from the basket. (c) Sol. Correct **Figure** 1 Mark 60° 300 100 m Let B is the basket of hot air balloon $\tan 60^\circ = \sqrt{3} = \frac{h}{x} \Rightarrow h = x\sqrt{3}$ _____(i) 1 1 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{h}{x + 100} \Rightarrow x = h\sqrt{3} - 100$ (ii) 17 MS_X_Mathematics_041_30/5/1_2022-23

1

(a)
$$h = (h\sqrt{3} - 100)\sqrt{3} = 3h - 100\sqrt{3} \Rightarrow h = 50\sqrt{3} \text{ m}$$

(b) $\sin 60^\circ = \frac{\sqrt{3}}{2} = \frac{h}{v} = \frac{50\sqrt{3}}{v} \Rightarrow y = 100 \text{ m}$

(c)
$$x = \frac{h}{\sqrt{3}} = 50 \text{ m} \Rightarrow x+100=150 \text{ m}$$

Correct

Figure

1 Mark

1

1

 $\frac{1}{2}$

1

$$\tan 60^{\circ} = \sqrt{3} = \frac{h}{x} \Rightarrow h = x\sqrt{3}$$
 (i)
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{h}{100 - x} \Rightarrow \sqrt{3}h = 100 - x$ (ii)

18

	$h = \sqrt{3} (100 - \sqrt{3}h) \Rightarrow h = 25\sqrt{3} \text{ m}$	1 2
	(b) $\sin 60^{\circ} = \frac{\sqrt{3}}{2} = \frac{h}{BD} \implies BD = 50 \text{ m}$	1
	(c) $x = \frac{h}{\sqrt{3}} = 25 \text{ m}$	
	$\Rightarrow AC = 100 - x = 75 \text{ m}$	1/2
33(a).	A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 10 cm and 8 cm respectively. Find the lengths of the sides AB and AC, if it is given	
	that area \triangle ABC = 90 cm ² .	
	A O 4 cm D 8 cm C	
Sol.	10 B B C	

	Join OA, OB, OC and draw OE \(\perp \) AC and OF \(\perp \) AB.	
	John OA, OB, OC and draw OE ± AC and OF ± AB.	$1\frac{1}{2}$
	BF = 10 cm, CE = 8 cm, Let $AF = AE = x$	
	$ar \Delta ABC = ar \Delta BOC + ar \Delta COA + ar \Delta AOB$	$1\frac{1}{2}$
	$90 = \frac{1}{2}.4 \text{ (BC + CA + AB)}$	
	90 = 2(18 + 8 + x + 10 + x)	1
	90 = 4(18 + x)	
	x = 4.5	
	AB = 14·5 cm and AC = 12·5 cm	1
	or	
33(b).	Two circles with centres O and O' of radii 6 cm and 8 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.	
	O A O'	

		2
	Let $OA = x$, $O'A = 10 - x$	
	$AP^2 = 36 - x^2$	1/2
	Also $AP^2 = 64 - (10 - x)^2$	1/2
	Therefore $36 - x^2 = 64 - (10 - x)^2$	426
	$\Rightarrow 36 - x^2 = 64 - 100 - x^2 + 20 x$	
	$\Rightarrow x = 3.6$	2
	In \triangle PAO, $AP^2 = 36 - (3.6)^2 = 23.04$	82
	\Rightarrow AP = 4·8	1
	Length PQ = 2 x AP = 9.6 cm	$\frac{1}{2}$
34(a).	A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of 6 km/h more than the first speed. If it takes 3 hours to complete the journey, what was its first average speed?	
Sol.	Let first average speed of the train be x km/hr.	
	$\frac{54}{x} + \frac{63}{x+6} = 3$	2
	$\Rightarrow 54x + 324 + 63x = 3x^2 + 18x$	

 $OO' = \sqrt{6^2 + 8^2} = 10 \text{ cm}$ $\{OP \perp O'P\}$

Sol.

$\Rightarrow 3x^2 - 99x - 324 = 0 \text{ or } x^2 - 33x - 108 = 0$	2
$\Rightarrow (x-36)(x+3)=0$	
\Rightarrow x = 36, -3 (rejected)	1
Therefore, first average speed of the train was 36 km/hr.	
OR	
Two pipes together can fill a tank in $\frac{15}{8}$ hours. The pipe with	
larger diameter takes 2 hours less than the pipe with smaller	
diameter to fill the tank separately. Find the time in which each	
pipe can fill the tank separately.	
Let the time taken by smaller diameter tap be x hrs.	
Time taken by larger diameter tap is $(x-2)$ hrs.	
Therefore $\frac{1}{x-2} + \frac{1}{x} = \frac{8}{15}$	2
$\Rightarrow 15(2x-2) = 8x(x-2)$	
$\Rightarrow 8x^2 - 46x + 30 = 0$	
$\Rightarrow 4x^2 - 23x + 15 = 0$	1
$\Rightarrow (4x-3)(x-5)=0$	
$\Rightarrow x = \frac{3}{4}, x = 5$	1
	⇒ $(x-36)(x+3)=0$ ⇒ $x=36$, -3 (rejected) Therefore, first average speed of the train was 36 km/hr. OR Two pipes together can fill a tank in $\frac{15}{8}$ hours. The pipe with larger diameter takes 2 hours less than the pipe with smaller diameter to fill the tank separately. Find the time in which each pipe can fill the tank separately. Let the time taken by smaller diameter tap be x hrs. Time taken by larger diameter tap is $(x-2)$ hrs. Therefore $\frac{1}{x-2} + \frac{1}{x} = \frac{8}{15}$ ⇒ $15(2x-2) = 8x(x-2)$ ⇒ $8x^2 - 46x + 30 = 0$ ⇒ $4x^2 - 23x + 15 = 0$ ⇒ $(4x-3)(x-5) = 0$

	$x \neq \frac{3}{4} \text{ as } x - 2 < 0$	
	Smaller diameter tap fills in 5 hrs.	
	Larger diameter tap fills in 3 hrs.	1
35.	A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find the area of that part of the field in which the horse can graze. Also, find the increase in grazing area if length of rope is increased to 10 m. (Use $\pi = 3.14$)	
Sol.	Area of that part of the field in which the horse can graze by means of a 5 m long rope = $\frac{1}{4} \times 3.14 \times (5)^2$	1
	$= 19.625 m^2$	1
	Area of that part of the field in which the horse can graze by means of a 10 m long rope $=\frac{1}{4}\times 3.14\times (10)^2$	1
	$= 78.5 m^2$	1
	Increase in grazing area = $78.5 m^2 - 19.625 m^2 = 58.875 m^2$	1
	SECTION E	
	This section comprises of 3 case-study based questions of 4 marks each.	

(ii) Volume of material dug out to make one dimple = $\frac{2}{3} \times \frac{22}{7} \times 8$

1

 $=\frac{352}{21}$ mm³ or 16.76 mm³

(iii)(a) radius of ball = 21 mm	
Total surface area exposed to surroundings	
$= 4\pi(21)^2 - 315 \times \pi(2)^2 + 315 \times 2\pi(2)^2$	1
$= 4 \times \frac{22}{7} \times 21 \times 21 + \frac{22}{7} \times 315 \times 4$	
= 9504 mm ²	1
OR	
(iii) (b) Volume of the golf ball = $\frac{4}{3}\pi(21)^3 - 315 \times \frac{2}{3}\pi(2)^3$	1
= 33528 mm ³	1

P (Making purple) = $\frac{1}{9}$	1
(iii)(a) As P(winning) = $\frac{1}{9}$	
Therefore, number of people must win = $\frac{1}{9}$ x 99 = 11	$\frac{1}{2}$
∴ Game lost by 88 persons.	$\frac{1}{2}$
Funds collected = 5 x 88 − 10 x 11 = ₹ 330	1
OR	
(iii)(b) Number of participants = 99	
P(winning the game) = $\frac{1}{9}$	
Number of persons won = 11	$\frac{1}{2}$
Number of persons lost = 88	$\frac{1}{2}$
Funds collected = $88 \times 5 - 11 \times 5 = ₹385$	1

38.

In a pool at an aquarium, a dolphin jumps out of the water travelling at 20 cm per second. Its height above water level after t seconds is given by $h = 20t - 16t^2$.

Based on the above, answer the following questions:

- (i) Find zeroes of polynomial $p(t) = 20t 16t^2$.
- (ii) Which of the following types of graph represents p(t)?

(iii) (a) What would be the value of h at $t = \frac{3}{2}$? Interpret the result.

OR

(iii) (b) How much distance has the dolphin covered before hitting the water level again?

Sol.	$(i) - 16t^2 + 20t = 0 \implies 4t(-4t + 5) = 0$	
	$t=0,t=\frac{5}{4}$	1
	(ii) (a)	1
	(iii)(a) At $t = \frac{3}{2}$, $h = -16 \times \frac{9}{4} + 20 \times \frac{3}{2} = -36 + 30 = -6$	1
	It means after $\frac{3}{2}$ seconds, dolphin has reached 6 cm below water level.	1
	OR	
	(iii)(b) Speed of dolphin = 20 cm per second.	
	In one second, distance covered = 20 cm	
	In $\frac{5}{4}$ seconds, distance covered = 20 x $\frac{5}{4}$ = 25 cm	2