MARKING SCHEME

MATHEMATICS (Subject Code-041)

(PAPER CODE: 30/2/1)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Mark
	SECTION A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each	
1.	Which of the following quadratic equations has sum of its roots as 4?	
	(a) $2x^2 - 4x + 8 = 0$ (b) $-x^2 + 4x + 4 = 0$	
	(c) $\sqrt{2} x^2 - \frac{4}{\sqrt{2}} x + 1 = 0$ (d) $4x^2 - 4x + 4 = 0$	
Sol.	$(b) - x^2 + 4x + 4 = 0$	1
2.	What is the length of the arc of the sector of a circle with radius 14 cm and of central angle 90° ?	
	(a) 22 cm (b) 44 cm	
	(c) 88 cm (d) 11 cm	
Sol.	(a) 22 cm	1
3.	If Δ ABC \sim Δ PQR with \angle A = 32° and \angle R = 65°, then the measure of \angle B is :	
	(a) 32° (b) 65°	
	(c) 83° (d) 97°	
Sol.	(c) 83°	1
4.	If 'p' and 'q' are natural numbers and 'p' is the multiple of 'q', then what is the HCF of 'p' and 'q'?	
	(a) pq (b) p	
	(c) q (d) p+q	
Sol.	(c) q	1
5.	The coordinates of the vertex A of a rectangle ABCD whose three vertices are given as $B(0, 0)$, $C(3, 0)$ and $D(0, 4)$ are :	
	(a) (4,0) (b) (0,3)	
	(c) (3, 4) (d) (4, 3)	

	If the pair of equations $3x - y + 8 = 0$ and $6x - ry + 16 = 0$ represent	
	coincident lines, then the value of 'r' is:	
	(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$	
	(c) -2 (d) 2	
Sol.	(d) 2	
7.	A bag centains 100 cards numbered 1 to 100. A card is drawn at random from the bag. What is the probability that the number on the card is a perfect cube?	
	(a) $\frac{1}{20}$ (b) $\frac{3}{50}$	
	(c) $\frac{1}{25}$ (d) $\frac{7}{100}$	
Sol.	$(c)\frac{1}{25}$,
8.	The pair of equations x = a and y = b graphically represents lines which are: (a) parallel (b) intersecting at (b, a) (c) coincident (d) intersecting at (a, b)	
Sol.	(d) intersecting at (a, b)	1
	If one zero of the polynomial $6x^2 + 37x - (k-2)$ is reciprocal of the other,	
9.	then what is the value of k? (a) -4 (b) -6 (c) 6 (d) 4	
	(a) -4 (b) -6]
9. Sol.	(a) -4 (b) -6 (c) 6 (d) 4]
Sol.	(a) -4 (b) -6 (c) 6 (d) 4 (a) -4	

11.	If three coins are tossed simultaneously, what is the probability of getting	
	at most one tail?	
	(a) $\frac{3}{8}$ (b) $\frac{4}{8}$	
	(c) $\frac{5}{8}$ (d) $\frac{7}{8}$	
Sol.	(b) \(\frac{4}{8}\)	1
12.	In the given figure, DE BC. If AD = 2 units, DB = AE = 3 units and EC = x units, then the value of x is:	
	(a) 2 (b) 3 (c) 5 (d) $\frac{9}{2}$	
Sol.	(d) $\frac{9}{2}$	1
13.	The hour-hand of a clock is 6 cm long. The angle swept by it between 7:20 a.m. and 7:55 a.m. is: (a) $\left(\frac{35}{4}\right)^{\circ}$ (b) $\left(\frac{35}{2}\right)^{\circ}$ (c) 35° (d) 70°	
Sol.	$(b)\left(\frac{35}{2}\right)^{\circ}$	1
14.	The zeroes of the polynomial $p(x) = x^2 + 4x + 3$ are given by :	
	(a) 1,3 (b) -1,3 (c) 1,-3 (d) -1,-3	

15.	In the given figure, the quadrilate PA + CS is equal to :	eral PQF	S circumscribes a circle. Here	
	(a) QR (c) PS	(b)	PR	
Sol.	(c) PS (c) PS	(d)	PQ	1
16.	If α and β are the zeroes of the α then the value of $\alpha^2 + \beta^2$ is: (a) $a^2 - 2b$ (c) $b^2 - 2a$	(b)	polynomial $p(x) = x^2 - ax - b$, $a^2 + 2b$ $b^2 + 2a$	
Sol.	(b) $a^2 + 2b$			1
17.	The area of the triangle formed by axes is:		B.,	
	(a) ab (c) $\frac{1}{4}$ ab	(b)	$\frac{1}{2}$ ab	
Sol.	$\frac{4}{(b)} \frac{1}{2} ab$			Î

18.	In the given figure, AB then the length of OP is :	PQ. If AB = 6 cm, PQ = 2 cm and OB = 3 cm,	
	(a) 9 cm	(b) 3 cm	
	(e) 4 cm	(d) 1 cm	
Sol.	(d) 1 cm		- 1
	1 mark each. Two statements other is labelled as Reason (I the codes (a), (b), (c) and (d) a (a) Both Assertion (correct explanat (b) Both Assertion (the correct expla (c) Assertion (A) is	are Assertion and Reason based questions carrying is are given, one labelled as Assertion (A) and the R). Select the correct answer to these questions from as given below. (A) and Reason (R) are true and Reason (R) is the ion of the Assertion (A). (A) and Reason (R) are true, but Reason (R) is not ination of the Assertion (A). true, but Reason (R) is false. false, but Reason (R) is true.	
19.	through the Reason (R) : The lengths	to a circle is perpendicular to the radius e point of contact. s of tangents drawn from an external point to a	
	circle are e	quai.	
Sol.		Reason (R) are true, but Reason (R) is not the	1
	correct explanation of the A	ssertion (A).	1
Sol. 20.	Assertion (A): The polyno		1

	SECTION B This section comprises of Very Short Answer (VSA) type questions of 2 marks each.	
21.	Prove that $2 + \sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.	
Sol.	Let us assume that $2 + \sqrt{3}$ is rational	
	Let $2 + \sqrt{3} = \frac{p}{q}$; $q \neq 0$ and p, q are integers	1/2
	$\Rightarrow \sqrt{3} = \frac{p - 2q}{q}$	1/2
	p and q are integers, ∴ p – 2q is an integer	
	$\Rightarrow \frac{p-2q}{q}$ is a rational number	1/2
	$\Rightarrow \sqrt{3}$ is a rational number which contradicts our assumption that $\sqrt{3}$ is an	
	irrational number.	1/2
22(a).	$\Rightarrow 2 + \sqrt{3} \text{ is an irrational number}$ If $4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$, then find the value of p.	
Sol.	$4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$	
	$\Rightarrow 4(1)^2 - (2)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + p = \frac{3}{4}$	1
	$\Rightarrow 4 - 4 + \frac{3}{4} + p = \frac{3}{4}$	1/2
	\Rightarrow p = 0	1/2
	OR	
22(b).	If $\cos A + \cos^2 A = 1$, then find the value of $\sin^2 A + \sin^4 A$.	
Sol.	$\cos A + \cos^2 A = 1 \Rightarrow \cos A = 1 - \cos^2 A = \sin^2 A$	1
	$\therefore \sin^2 A + \sin^4 A = \cos A + \cos^2 A \ (\because \sin^2 A = \cos A)$ $= 1$	1
23.	Show that the points (-2, 3), (8, 3) and (6, 7) are the vertices of a right-angled triangle.	
Sol.	Let the given points be A (-2, 3), B (8, 3) and C (6, 7)	
	Then, AB = 10, BC = $\sqrt{4 + 16} = \sqrt{20}$,	1
	$1 \text{ Hell, } AD = 10, BC = \sqrt{4 + 10}$	-

	∴ AB ² = BC ² + AC ² ∴ the given points are the vertices of a right angled triangle.	1/2
24(a).	The length of the shadow of a tower on the plane ground is $\sqrt{3}$ times the height of the tower. Find the angle of elevation of the sun.	
Sol.	6 A	
	Let AB be the tower of height 'h'. $\therefore AC = \sqrt{3} h$	
	In \triangle ABC, $\tan \theta = \frac{AB}{AC} = \frac{h}{\sqrt{3} h}$	1
	$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$	1/2
	⇒ θ = 30°	1/2
NA.	OR	
24(b).	The angle of elevation of the top of a tower from a point on the ground which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.	
Sol.	B 367 C	
	Height of tower = AB	
	In \triangle ABC, $\tan 30^\circ = \frac{AB}{30}$	1
	\Rightarrow AB = $\frac{30}{\sqrt{3}}$ = $10\sqrt{3}$	
	V-2	1
	∴ Height of Tower is $10\sqrt{3}$ m	

25.	In the given figure, O is the centre of the circle. AB and AC are tangents drawn to the circle from point A. If \angle BAC = 65°, then find the measure of \angle BOC.	
Sol.	$\angle BAC + \angle BOC = 180^{\circ}$	1
	$\Rightarrow \angle BOC = 180^{\circ} - 65^{\circ}$ $\Rightarrow \angle BOC = 115^{\circ}$	1
	SECTION C This section comprises of Short Answer (SA) type questions of 3 marks each.	
26(a).	Find by prime factorisation the LCM of the numbers 18180 and 7575. Also, find the HCF of the two numbers.	
Sol.	$18180 = 2^2 \times 3^2 \times 5 \times 101$	1/2
	$7575 = 3 \times 5^2 \times 101$	1/2
	$LCM = 2^2 \times 3^2 \times 5^2 \times 101 = 90900$	1
	$HCF = 3 \times 5 \times 101 = 1515$	1
	OR	
26(b).	Three bells ring at intervals of 6, 12 and 18 minutes. If all the three bells rang at 6 a.m., when will they ring together again?	
Sol.	LCM of 6, 12, 18 = 36	2
	So, all the three bells ring together after 36 minutes at 6 : 36 AM	1
27.	Prove that : $ \left(\frac{1}{\cos \theta} - \cos \theta \right) \left(\frac{1}{\sin \theta} - \sin \theta \right) = \frac{1}{\tan \theta + \cot \theta} . $	
Sol.	LHS = $\left(\frac{1}{\cos \theta} - \cos \theta\right) \left(\frac{1}{\sin \theta} - \sin \theta\right)$	

	(4 2 0) (4 2 0)	
	$= \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right) \left(\frac{1 - \sin^2 \theta}{\sin \theta}\right)$	1/2
	$=\frac{\sin^2\theta}{\cos\theta}\times\frac{\cos^2\theta}{\sin\theta}$	1
	$= \sin \theta \cos \theta$	•
	RHS = $\frac{1}{\tan \theta + \cot \theta} = \frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}}$	100
	$\tan \theta + \cot \theta \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$	1/2
	$= \frac{\cos \theta \sin \theta}{\sin^2 \theta + \cos^2 \theta}$	1
	$= \sin 0 \cos 0$	55%
	∴ LHS = RHS	
28.	If $Q(0, 1)$ is equidistant from $P(5, -3)$ and $R(x, 6)$, find the values of x.	
Sol.	$PQ = QR \Rightarrow PQ^2 = QR^2$	
	$(5-0)^2 + (-3-1)^2 = (x-0)^2 + (6-1)^2$	1
	$\Rightarrow 25 + 16 = x^2 + 25$	1
	\Rightarrow x ² = 16	
	\Rightarrow x = 4, x = -4	1/2 + 1/2
29.	A car has two wipers which do not overlap. Each wiper has a blade of	
	length 21 cm sweeping through an angle of 120°. Find the total area	
	cleaned at each sweep of the two blades.	
Sol.	Area cleaned by 1 blade = $\frac{22}{7} \times 21 \times 21 \times \frac{120^{\circ}}{360^{\circ}}$	1½
	= 462	1
	\Rightarrow Total area cleaned = 2 \times 462 = 924	1/2
	∴ Total area cleaned is 924 cm ²	375
30 (a).	If the system of linear equations	
	2x + 3y = 7 and $2ax + (a + b)y = 28$	
	have infinite number of solutions, then find the values of 'a'	
	and 'b'.	
Sol.	system has infinite number of solutions	
	$\therefore \frac{2}{2a} = \frac{3}{a+b} = \frac{7}{28}$	1
	$\Rightarrow \frac{1}{a} = \frac{1}{4} \Rightarrow a = 4$	
	and $a + b = 12 \Rightarrow b = 8$	1
	0.004-0.00 (1.09.0 V	1
	OR	1

Sol. $217 \times + 13$ $131 \times + 23$ x + y = 5 Subtraction x - y = 1 $\Rightarrow x = 3, y$ 31. In the given at P. Provential	hen solve the equations for the values of x and y. $31 y = 913$ $17 y = 827$ Adding $348 (x + y) = 1740$ $17 y = 86$ $17 y = 86$ Are 17 y = 86 Are 18 ye of the circle and QPR is a tangent to it we that \angle QAP + \angle APR = 90°.	$\frac{1}{\frac{1}{\frac{1}{2} + \frac{1}{2}}}$
Sol. $217 \times + 17$ $131 \times + 27$ x + y = 5 Subtraction x - y = 1 $\Rightarrow x = 3, y$ 31. In the given at P. Provential	Adding 348 $(x + y) = 1740$ $(x + y) = 86$ $(x - y) = 86$	1
$x + y = 5$ Subtraction $x - y = 1$ $\Rightarrow x = 3, y$ 31. In the given at P. Prov $\Rightarrow \angle OPA$ $\Rightarrow \angle OPA$ $\Rightarrow \angle OPA$	Adding 348 $(x + y) = 1740$ g, 86 (x - y) = 86 y = 2 $y = 80$ figure, O is the centre of the circle and QPR is a tangent to it we that $\angle QAP + \angle APR = 90^{\circ}$.	1
Sol. $A = OP$ $A = A $	g, $86 (x - y) = 86$ Y = 2 Yen figure, O is the centre of the circle and QPR is a tangent to it we that \angle QAP + \angle APR = 90° .	1
$x - y = 1$ $\Rightarrow x = 3, y$ 31. In the given at P. Prove $\Rightarrow Z = 3$ Sol. $OA = OP$ $\therefore In \triangle OA$ $\Rightarrow Z = OPA$ $\Rightarrow Z = 3$	y = 2 ven figure, O is the centre of the circle and QPR is a tangent to it we that \angle QAP + \angle APR = 90°.	1 1/2 + 1/2
$\Rightarrow x = 3, y$ 31. In the given at P. Prove $\Rightarrow Z = 3, y$ Sol. OA = OP $\therefore \text{ In } \triangle \text{ OA}$ $\Rightarrow Z = 3, y$ $\Rightarrow A = 3, y$ $\Rightarrow A = 3, y$	ven figure, O is the centre of the circle and QPR is a tangent to it we that \angle QAP + \angle APR = 90°.	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
31. In the given at P. Provent at P. Prove	ven figure, O is the centre of the circle and QPR is a tangent to it we that \angle QAP + \angle APR = 90°.	1/2 + 1/2
Sol. $OA = OP$ \therefore In \triangle OP A \Rightarrow \angle OP A	we that $\angle QAP + \angle APR = 90^{\circ}$.	
$\begin{array}{c} \therefore \text{ In } \triangle \text{ OA} \\ \Rightarrow \angle \text{ OPA} \\ \Rightarrow \angle \text{ OAP} \end{array}$	B	
$\begin{array}{c} \therefore \text{ In } \triangle \text{ OA} \\ \Rightarrow \angle \text{ OPA} \\ \Rightarrow \angle \text{ OAP} \end{array}$	r n	
$\Rightarrow \angle \text{ OPA}$ $\Rightarrow \angle \text{ OAF}$		
⇒∠OAF	$AP, \angle OPA = \angle OAP \dots (i)$	1
	$A + \angle APR = 90^{\circ}$	1 ½
→ ∠ Q/M	$P + \angle APR = 90^{\circ}$ Using (i) + $\angle APR = 90^{\circ}$	1/2
	SECTION D	No.
This sec	etion comprises of Long Answer (LA) type questions of 5 marks each.	
32. How man	y terms of the arithmetic progression 45, 39, 33, must be	
taken so t	hat their sum is 180 ? Explain the double answer.	
Sol. 45, 39, 33	,	
a = 45, d =	=-6	1/2
$S_n = 180$		
$180 = \frac{n}{2}$	$[2 \times 45 + (n-1)(-6)]$	
≅ "	and the second s	1
	$\frac{n}{2}$ [90 – 6n + 6]	12

	$\Rightarrow 360 = 96n - 6n^2$	
	$\Rightarrow 6n^2 - 96n + 360 = 0$	1
	\Rightarrow n ² - 16n + 60 = 0 \Rightarrow (n - 10) (n - 6) = 0	I
	$n-10=0, n-6=0 \Rightarrow n=10, 6$	1
	We get two values of 'n' as sum of 7 th term to 10 th term is zero as some terms are negative and some are positive.	1/2
33(a).	As observed from the top of a 75 m high lighthouse from the	
	sea-level, the angles of depression of two ships are 30° and 60°. If	
	one ship is exactly behind the other on the same side of the	
	lighthouse, find the distance between the two ships.	
	(Use $\sqrt{3} = 1.73$)	
Sol.	v	1 for
	X I GOO A Q	figure
	300 (100	ngur
	/ 75 m	
	300	
	S R P	
	PQ = Height of Light house = 75 m	
	$\angle XQS = \angle QSP = 30^{\circ}$	
	ZXQR = ZQRP = 60°	
	R and S are position of ships. In \triangle PQR,	
	TO SERVICE MANAGEMENT AND ADDRESS OF THE PROPERTY OF THE PROPE	220
	$\frac{75}{PR} = \tan 60^\circ = \sqrt{3} \implies PR = \frac{75}{\sqrt{3}} = 25\sqrt{3}$	11/2
	In $\triangle PQS$, $\frac{75}{PS} = \tan 30^{\circ}$	
	\Rightarrow PS = $75\sqrt{3}$	1

	∴ Distance between the ships, RS = PS – PR	
	$=75\sqrt{3}-25\sqrt{3}=50\sqrt{3}$	1
	$= 50 \times 1.73 = 86.5$	1/2
	∴ Distance between the ships is 86.5 m	
	OR	
33(b).	From a point on the ground, the angle of elevation of the bottom and top of a transmission tower fixed at the top of 30 m high building are 30° and 60°, respectively. Find the height of the transmission tower. (Use $\sqrt{3} = 1.73$)	
Sol.	P	1 for correc figure
	h m B	
	30 m	
	Height of building AB = 30 m BP = transmission tower = $h(say)$	
	$\angle ACB = 30^{\circ}, \angle ACP = 60^{\circ}$ In $\triangle ABC$, $\tan 30^{\circ} = \frac{AB}{AC}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{30}{AC} \Rightarrow AC = 30\sqrt{3}$	1½
	In \triangle APC, $\tan 60^{\circ} = \frac{AP}{AC}$	

	$\sqrt{3} = \frac{30 + h}{30\sqrt{3}} \Rightarrow 30\sqrt{3} \times \sqrt{3} = 30 + h$							11/2		
	$\Rightarrow h = 30 \text{ (}$ $\Rightarrow h = 60$	8			C 0					1
34.	Height of transmission tower = 60 m									
	100 period	A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mean and median of the following data.								
	Number of cars	0 – 10	10 – 20	20 - 30	30 – 40	40 – 50	50 - 60	60 – 70	70 – 80	
	Frequency (periods)	7	14	13	12	20	11	15	8	
Sol.						.,				
	Nu	mber of cars	. 2	c _i	f_i		$x_i f_i$		c.f.	
		0 - 10		5	7		35		7	
	1	0 - 20	1	5	14		210		21	
	2	0 - 30	2	:5	13		325		34	
	3	0 - 40	3	5	12		420		46	
	4	0 - 50	4	-5	20		900		66	
	5	0 - 60	5	5	11		605		77	
	6	0 - 70	6	5	15		975		92	
	7	0 - 80	7	5	8		600		100	
		T	otal		100		4070			
	Correct table						2			
	$Mean = \frac{\sum z}{\sum}$	$\frac{\mathbf{f}_{i}\mathbf{f}_{i}}{\mathbf{f}_{i}} = \frac{4}{3}$	$\frac{670}{100} =$	40.7						1
	Median clas	s: 40 –	50							1/2
	Median = 4	$0 + \frac{50}{2}$	$\frac{-46}{0}$ ×	10 = 42						11/2
35(a).	Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of									

Sol.	B D C Q M R	l for correct figure
	In \triangle ABC and \triangle PQR $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$ $\frac{AB}{PQ} = \frac{2 BD}{2 QM} = \frac{AD}{PM}$	1
	(: D is midpoint of BC and M is midpoint of QR) $\frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM} \Rightarrow \Delta ABD \sim \Delta PQM$	1
	$\Rightarrow \angle B = \angle Q - (i)$ Now, In $\triangle ABC$ and $\triangle PQR$ $\frac{AB}{PQ} = \frac{BC}{QR}$ (given)	1/2
	$\angle B = \angle Q$ from (i) $\therefore \triangle ABC \sim \triangle PQR$	1/2
	OR	
35(b).	Through the mid-point M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC in L and AD (produced) in E. Prove that $EL = 2BL$.	

	SECTION E This section comprises of 3 case-study based questions of 4 marks each.		
36.	Case Study - 1		
	In an annual day function of a school, the organizers wanted to give a cash prize along with a memento to their best students. Each memento is made as shown in the figure and its base ABCD is shown from the front side. The rate of silver plating is $\stackrel{?}{=}$ 20 per cm ² .		
	O 7 cm A 3 cm B		
	Based on the above, answer the following questions:		
	(i) What is the area of the quadrant ODCO?		
	(ii) Find the area of Δ AOB.		
	(iii) (a) What is the total cost of silver plating the shaded part ABCD?		
	OR		
	(iii) (b) What is the length of arc CD?		
Sol.	(i)Area of sector ODCO = $\frac{22}{7} \times 7 \times 7 \times \frac{90}{360} = \frac{77}{2}$ or 38.5	1/2 + 1/2	
	∴ Area of sector ODCO is $\frac{77}{2}$ or 38.5 cm ²		
	(ii) ar $(\Delta AOB) = \frac{1}{2} \times 10 \times 10 = 50$	1	
	∴ ar (∆ AOB) is 50 cm ²		
	(iii) (a) Required cost = $(50 - 38.5) \times 20$	1	
	= 230 ∴ required cost is ₹ 230.		
	OR		
	(iii) (b) Length of arc CD = $\frac{90}{360} \times 2 \times \frac{22}{7} \times 7$	1	
	Waterway to	1	
	= 11 ∴ Length of are CD is 11 cm.	18	
	Lengui of are CD is 11 cm.	18	
MC V I	Mathematics 041 30/2/1 2022-23	10	

37.	Case Study - 2	
	In a coffee shop, coffee is served in two types of cups. One is cylindrical i	
	shape with diameter 7 cm and height 14 cm and the other :	
	hemispherical with diameter 21 cm.	
	Based on the above, answer the following questions:	
	(i) Find the area of the base of the cylindrical cup.	
	(ii) (a) What is the capacity of the hemispherical cup?	
	OR	
	(ii) (b) Find the capacity of the cylindrical cup.	
	(iii) What is the curved surface area of the cylindrical cup?	
Sol.	22 . 7 . 7 77	
	(i) Area of base of the cylindrical cup = $\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = \frac{77}{2}$ or 38.5	1
	∴ Area of base of the cylindrical cup is $\frac{77}{2}$ or 38.5 cm ²	
	(ii) (a) Capacity of hemispherical cup = $\frac{2}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}$	1
	3 7 2 2 2	
	$= \frac{4851}{2} \text{ or } 2425.5$	1
	4851	
	∴ Capacity of hemispherical cup is $\frac{4851}{2}$ cm³ or 2425.5 cm³	
	OR 2	
	(ii) (b) Capacity of cylindrical cup = $\frac{22}{7} \times (7)^2 \times 14$	1
	= 539	1
	∴ Capacity of cylindrical cup is 539 cm ³	
	(iii) External Curved surface area of cylindrical cup = $2 \times \frac{22}{7} \times \frac{7}{2} \times 14 = 308$	1
	∴ External Curved surface area of cylindrical cup is 308 cm²	

Computer-based learning (CBL) refers to any teaching methodology that makes use of computers for information transmission. At an elementary school level, computer applications can be used to display multimedia lesson plans. A survey was done on 1000 elementary and secondary schools of Assam and they were classified by the number of computers they had.

Number of Computers	1 – 10	11-20	21-50	51-100	101 and more
Number of Schools	250	200	290	180	80

One school is chosen at random. Then:

- Find the probability that the school chosen at random has more than 100 computers.
- (ii) (a) Find the probability that the school chosen at random has 50 or fewer computers.

OR

- (ii) (b) Find the probability that the school chosen at random has no more than 20 computers.
- (iii) Find the probability that the school chosen at random has 10 or less than 10 computers.

Sol.	(i) P (more than 100 computers) = $\frac{80}{1000}$ or 0.08	1
	(ii)(a) 50	or fewer computers = $250 + 200 + 290 = 740$	1
	Red	quired probability = $\frac{740}{1000}$ or 0.74	1
		OR	
	(ii)(b)	No more than 20 computers = $250 + 200 = 450$	1
	10017047046	Required probability = $\frac{450}{1000}$ or 0.45	1
	(iii)	P (10 or less than 10 computer) = $\frac{250}{1000}$ or 0.25	1