MARKING SCHEME

MATHEMATICS (BASIC) 430/6/1

SECTION A

 The time, in seconds, taken by 150 athletes to run a 100 m hurdle race are tabulated below:

Time (sec.)	13-14	14-15	15-16	16-17	17-18	18-19
Number of Athletes	2	4	5	71	48	20

The number of athletes who completed the race in less than 17 seconds is

(a) 11

(b) 71

(c) 82

(d) 68

Answer (c) 82

1

- 2. The distance of the point (5, 0) from the origin is
 - (a) 0

(b) 5

(c) √5

(d) 5²

Answer (b) 5

1

3. In $\triangle ABC$, right angled at C, if $\tan A = \frac{8}{7}$, then the value of $\cot B$ is

(a) $\frac{7}{8}$

b) $\frac{8}{7}$

(c) $\frac{7}{\sqrt{113}}$

(d) $\frac{8}{\sqrt{113}}$

l

- Area of a quadrant of a circle of radius 7 cm is 4.
 - 154 cm^2 (a)

(b) 77 cm²

(c) $\frac{77}{9}$ cm²

(d) $\frac{77}{4}$ cm²

Answer (c) $\frac{77}{2}$ cm²

- If HCF (72, 120) = 24, then LCM (72, 120) is
 - (a) 72

360

(b) 120

(c) Answer (c) 360 (d) 9640

One card is drawn at random from a well-shuffled deck of 52 playing cards. What is the probability of getting a black king?

Answer (a) $\frac{1}{26}$

The graph of y = f(x) is shown in the figure for some polynomial f(x).

The number of zeroes of f(x) is

(a) 0 (b)

(c)

(d)

Answer (a) 0

8.	The	value of	k, if (6, 1	c) lies o	n the line	e repres	ent	ed h	ov r	_ 3v -	+ 6 = () is	
		-4	, , ,			(b)			·	0,		, 10	
	(c)	-12				(d)	4						
An	swer (1
9.	The	e prime											
	(a)	$2^8 \times 3$	3^{2}					(b)	2^7	$\times 3^3$		
	(c)	$2^8 \times 3$	31					(d)	2^7	\times 3 ²		
Ansv	ver (a)	$2^8 \times 3^2$											1
10.	If n	is a na											
	(a)	0						(b)	2				
	(c)	4						(d)	6				
	ver (a)	0											1
		median							22-2000-2012				
	(a)	5					(b)	7				
	(c)	11					((d)	13				
Ans	wer (b	7											1
12.		4) is the											
	(a)					(b))	4					
	(c)					(d))	-2					
Aı	iswer (1

- 13. The value of 'k' for which the system of equations kx + 2y = 5 and 3x + 4y = 1 have no solution, is
 - (a) $k = \frac{3}{2}$

(b) $k \neq \frac{3}{2}$

(c) $k \neq \frac{2}{3}$

(d) k = 15

Answer (a) $k = \frac{3}{2}$

14. In the given figure, PQ and PR are tangents drawn from P to the circle with centre O such that ∠QPR = 65°. The measure of ∠QOR is.

(a) 65°

(b) 125°

(c) 115°

(d) 90°

Answer (c) 115°

1

15. The zeroes of the quadratic polynomial $16x^2 - 9$ are:

(a) $\frac{3}{4}, \frac{3}{4}$

(b) $-\frac{3}{4}, \frac{3}{4}$

(c) $\frac{9}{16}, \frac{9}{16}$

(d) $-\frac{3}{4}, -\frac{3}{4}$

Answer (b) $-\frac{3}{4}, \frac{3}{4}$

1

If -5, x, 3 are three consecutive terms of an A.P., then the value of x is

(a) -2

(b) 2

(c) 1

(d) -1

Answer (d) – 1

1

17.	An u		die is thrown	. The probabi	lity (of ge	tting	an odd	lprime
	(a)	$\frac{1}{6}$		(b)	$\frac{1}{2}$				
	(c)	× .		(d)	$\frac{1}{3}$				
Ansv	ver (d)	$\frac{1}{3}$							1
18.	If t	he mean	of 6, 7, x, 8,	y, 14 is 9, tl	nen				
	(a)	x + y =	= 21			(b)	x +	y = 19	1
	(c)	x - y =	÷ 19			(d)	x -	y = 21	
Ansv	ver (b)	x + y = 19							1
	stat	tement of		Q. 20 : In q					
	(a)		sertion (A) an explanation of	d Reason (R) Assertion (A).	are ti	rue; a	and R	eason (R) is the
	(b)		sertion (A) and explanation of	l Reason (R) ar Assertion (A).	e tru	e, but	Reas	son (R) i	s not the
	(c)	Assertio	n (A) is true, b	out Reason (R)	is fals	se.			
	(d)	Assertio	n (A) is false, l	but Reason (R)	is tru	ie.			
19.	Ass	sertion (A): The proba	bility that a lea	ap yea	ar has	s 53 S	undays	is $\frac{2}{7}$.
	Rea	ason (R) :	The probabi	lity that a non-	leap	year l	has 53	3 Sunda	ys is $\frac{1}{7}$.
		Both Assert of Assertio		on (R) are true bu	it Reas	son (R) is no	t the corr	ect 1
20	. Ass		A): For $0 < \theta \le$ al of each other.	≤ 90°, cosec θ −	cot θ	and	cosec	θ + cot (θ are
	Rea	ason (R) :	$\cot^2 \theta - \csc^2$	$\theta = 1$					
- Ansv	ver (c)	Assertion(A	A) is true, but Re	ason (R) is false.					1

SECTION B

Evaluate: $5 \csc^2 45^{\circ} - 3 \sin^2 90^{\circ} + 5 \cos 0^{\circ}$. 21.

Solution $5 \csc^2 45^\circ - 3 \sin^2 90^\circ + 5 \cos 0^\circ$

$$= 5(\sqrt{2})^{2} - 3(1)^{2} + 5(1)$$

$$= 12$$

$$= 12$$

$$\frac{1}{2}$$

Find a quadratic polynomial whose zeroes are 6 and -3. 22.

Solution (a) Sum of zeroes =
$$6+(-3)=3$$

$$\frac{1}{2}$$
Product of zeroes = $6(-3)=-18$

$$\frac{1}{2}$$
Quadratic polynomial is $(x^2-3x-18)$ or $k(x^2-3x-18)$

Find the zeroes of the polynomial $x^2 + 4x - 12$.

Solution (b)
$$x^2 + 4x - 12 = (x + 6) (x - 2)$$
 1
Zeroes are - 6, 2

23. (a) Find the value of k for which the roots of the quadratic equation $5x^2 - 10x + k = 0$ are real and equal.

Solution
$$a = 5, b = -10, c = k$$

Roots are real and equal
$$D = 0 \Rightarrow b^{2} - 4ac = 0$$

$$(-10)^{2} - 4(5) (k) = 0 \Rightarrow 100 - 20k = 0$$

$$k = 5$$
OR

(b)

If one root of the quadratic equation
$$3x^2 - 8x - (2k + 1) = 0$$
 is seven times the other, then find the value of k.

Solution Let roots be α , 7α

$$\alpha + 7\alpha = -\left(\frac{-8}{3}\right) = \frac{8}{3} \Rightarrow 8\alpha = \frac{8}{3} \text{ gives } \alpha = \frac{1}{3}$$

$$\alpha(7\alpha) = -\frac{(2k+1)}{3} \Rightarrow 7\alpha^2 = -\frac{(2k+1)}{3}$$

$$k = -\frac{5}{3}$$
 $\frac{1}{2}$

- 24. A box contains 20 discs which are numbered from 1 to 20. If one disc is drawn at random from the box, then find the probability that the number on the drawn disc is a
 - 2-digit number
 - (ii) number less than 10

Solution P(2 digit number) =
$$\frac{11}{20}$$

1

P(number less than 10) =
$$\frac{9}{20}$$

25. From a point P, the length of the tangent to a circle is 24 cm and the distance of P from the centre of the circle is 25 cm. Find the radius of the

Solution

circle.

$$OQ = \sqrt{25^2 - 24^2}$$

figure

$$OQ = 7 \text{ cm}$$

1/2

SECTION C

The sum of the reciprocals of Varun's age (in years) 3 years ago and 5 26.years from now is $\frac{1}{3}$. Find his present age.

Solution Let Varun's present age = x years

ATQ,
$$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$$

 $\frac{x+5+x-3}{(x-3)(x+5)} = \frac{1}{3} \Rightarrow \frac{2x+2}{x^2+2x-15} = \frac{1}{3}$

1

$$6x + 6 = x^2 + 2x - 15 \implies x^2 - 4x - 21 = 0$$

$$(x-7)(x+3) = 0$$

 $x = 7, x = -3$ (rejecting)

1/2

27. A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household:

Family size	1-3	3-5	5-7	7-9	9-11
Number of Families	7	8	2	2	1

Find the median of this data.

Solution

Family size	1 – 3	3 – 5	5 – 7	7 – 9	9 - 11
Number of families	7	8	2	2	1
Cf	7	15	17	19	20

Median class
$$3-5$$
For correct cf 1
 $\frac{1}{2}$

Median =
$$l + \frac{\frac{N}{2} - C}{f} \times h$$

= $3 + \frac{10 - 7}{8} \times 2$
= 3.75

28. (a) E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ΔABE ~ ΔCFB.

Solution

- (a)ABCD is a parallelogram
- (1 for figure)

1 ½

- To prove: \triangle ABE \sim \triangle CFB
- In \triangle ABE and \triangle CFB,
- $\angle A = \angle C$ (opp. angles of parallelogram) 1/2
- \angle AEB = \angle CBF (alt. int. angles) 1/2
- $\therefore \triangle ABE \sim \triangle CFB$ (AA similarity) 1
 - E~ΔCFB (AA similarity)

In the given figure, CM and RN are respectively the medians of ΔABC and ΔPQR. If ΔABC ~ ΔPQR, then prove that ΔAMC ~ ΔPNR.

Solution

$$\begin{array}{l}
\Delta \, ABC \sim \Delta \, PQR \\
\frac{AB}{PQ} = \frac{AC}{PR} \Rightarrow \frac{2AM}{2PN} = \frac{AC}{PR} \\
\frac{AM}{PN} = \frac{AC}{PR} \\
Also \angle A = \angle P \, (\Delta \, ABC \sim \Delta \, PQR) \\
\therefore \Delta \, AMC \sim \Delta \, PNR \, (SAS \, similarity)
\end{array}$$

11/2

1

Find the co-ordinates of the points of trisection of the line-segment joining 29. the points (5, 3) and (4, 5).

Solution

Let C divides AB in the ratio 1:2

$$\therefore C\left(\frac{1 \times 4 + 2 \times 5}{1 + 2}, \frac{1 \times 5 + 2 \times 3}{1 + 2}\right), \text{ i.e., } C\left(\frac{14}{3}, \frac{11}{3}\right)$$
Let D divides AB in the ratio 2 : 1
$$\therefore D\left(\frac{2 \times 4 + 1 \times 5}{2 + 1}, \frac{2 \times 5 + 1 \times 3}{2 + 1}\right), \text{ i.e., } D\left(\frac{13}{3}, \frac{13}{3}\right)$$
1

30. Prove that $3-2\sqrt{5}$ is an irrational number, given that $\sqrt{5}$ is an irrational number.

Solution Let us assume that $3 - 2\sqrt{5}$ is a rational number.

∴3 –
$$2\sqrt{5} = \frac{p}{q}$$
, q ≠ 0, p and q are integers

$$\Rightarrow \sqrt{5} = \frac{3q-p}{2q}$$

Now RHS is rational but LHS is irrational

- .. Our assumption is wrong
- $\therefore 3 2\sqrt{5}$ is an irrational number.

31. (a) Prove that
$$\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\cos^2 A}{(1 + \sin A)^2}$$

Solution LHS =
$$\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$$

$$= \frac{1 - \sin A}{1 + \sin A}$$

$$= \frac{(1 - \sin A)(1 + \sin A)}{(1 + \sin A)(1 + \sin A)}$$

$$= \frac{1 - \sin^2 A}{(1 + \sin A)^2} = \frac{\cos^2 A}{(1 + \sin A)^2}$$
1/2

OR

(b) Prove that $(\sec \theta + \tan \theta) (1 - \sin \theta) = \cos \theta$

Solution LHS =
$$(\sec \theta + \tan \theta) (1 - \sin \theta)$$

= $\left(\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}\right) (1 - \sin \theta)$ 1
= $\left(\frac{1 + \sin \theta}{\cos \theta}\right) (1 - \sin \theta) = \frac{(1 - \sin^2 \theta)}{\cos \theta}$ 1/2 + 1/2
= $\frac{\cos^2 \theta}{\cos \theta} = \cos \theta = \text{RHS}$ 1

SECTION D

32. (a) From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, find the width of the river. (Use √3 = 1.73)

Solution

For fig. 1

1/2

In \triangle APQ, $\tan 30^\circ = \frac{3}{AQ}$ $\frac{1}{\sqrt{3}} = \frac{3}{AQ} \implies AQ = 3\sqrt{3}$

In \triangle PBQ, $\tan 45^\circ = \frac{3}{RQ}$

BQ = 3¹/₂

 $AB = AQ + BQ = 3\sqrt{3} + 3$ = 3(1.73 + 1) = 8.19

Width of river = 8.19 m

(b) From a point on the ground, the angle of elevation of the bottom and top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. (Use $\sqrt{3} = 1.73$)

Solution BC = transmission tower = h and AD = x

	For fig. 1
In \triangle ABD, $\tan 45^\circ = \frac{20}{x}$	1
x = 20	1/2
In \triangle ACD, $\tan 60^\circ = \frac{20 + h}{x}$	1
$\sqrt{3}x = 20 + h$	1/2
$h = 20 (\sqrt{3} - 1) \text{ m}$	1/2
h = 14.6 m	1/2

33. The first term of an A.P. is 22, the last term is -6 and the sum of all the terms is 64. Find the number of terms of the A.P. Also, find the common difference.

Solution a = 22, $a_n = -6$, $S_n = 64$ $S_n = 64 \implies \frac{n}{2} [22 - 6] = 64$ n = 8

2 1 1

$$22 + (8-1) d = -6$$

 $\Rightarrow d = -4$

34. An ice-cream filled cone having radius 5 cm and height 10 cm is as shown in the figure. Find the volume of the ice-cream in 7 such cones.

Solution Height of conical part =
$$10 - 5 = 5$$
 cm

1/2

Volume of 1 ice cream cone

$$= \frac{1}{3}\pi r^{2}h + \frac{2}{3}\pi r^{3}$$

$$= \frac{1}{3}\pi r^{2}(h + 2r)$$

$$= \frac{1}{3} \times \frac{22}{7} \times 5 \times 5[5 + 10]$$

$$= \frac{22 \times 25 \times 15}{21} \text{ cm}^{3}$$
1

Volume of 7 ice cream cones

$$= 7 \times \frac{22 \times 25 \times 15}{21}$$

= 2750 cm³

35. (a) Prove that a line drawn parallel to one side of a triangle to intersect the other two sides in distinct points, divides the two sides in the same ratio.

Solution

For figure1

Given In
$$\triangle$$
 ABC, DE // BC

To prove: $\frac{AD}{DB} = \frac{AE}{EC}$

Const.: Join BE, CD. Draw DM \perp AC and EN \perp AB

Proof: $\frac{ar(\triangle ADE)}{ar(\triangle BDE)} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$ (i)

similarly $\frac{ar(\triangle ADE)}{ar(\triangle CDE)} = \frac{AE}{EC}$ (ii)

 Δ BDE and Δ CDE are on the same base DE and between the same parallel lines BC and DE. $ar(\triangle ADE) = ar(\triangle CDE)$ (iii)

From (i), (ii) and (iii) $\frac{AD}{DB} = \frac{AE}{EC}$

In the given figure, $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$. Prove that (b) $\Delta PQS \sim \Delta TQR$.

Solution In \triangle PQR, \angle 1 = \angle 2

∴ PQ = PR (sides opposite to equal angles)

Now
$$\frac{QR}{QS} = \frac{QT}{PR}$$

∴ $\frac{QS}{QR} = \frac{PR}{QT} \Rightarrow \frac{QS}{QR} = \frac{PQ}{QT}$ (as PR = PQ) ______ (i)

1

In \triangle PQS and \triangle TQR,

$$\angle Q = \angle Q \text{ (common)}$$

$$\frac{QS}{QR} = \frac{PQ}{QT} \qquad \text{(from (i))}$$

$$\therefore \triangle PQS \sim \triangle TQR \text{ (SAS similarity)}$$

SECTION E

For the inauguration of 'Earth day' week in a school, badges were given to 36. volunteers. Organisers purchased these badges from an NGO, who made these badges in the form of a circle inscribed in a square of side 8 cm.

O is the centre of the circle and ∠AOB = 90°:

Based on the above information, answer the following questions:

- (i) What is the area of square ABCD?
- (ii) What is the length of diagonal AC of square ABCD?
- (iii) Find the area of sector OPRQO.

OR

(iii) Find the area of remaining part of square ABCD when area of circle is excluded.

Solution (i) Area of square ABCD =
$$(8)^2 = 64 \text{ cm}^2$$

(ii) AC =
$$\sqrt{(8)^2 + (8)^2} = \sqrt{128} = 8\sqrt{2}$$
 cm

(iii) We know that diagonals of square bisect each other at 90°

$$\angle$$
 AOB = 90°

Area of sector OPRQ =
$$\frac{\pi r^2 \theta}{360^{\circ}}$$

$$= \frac{22}{7} \times 4 \times 4 \times \frac{90}{360}$$
$$= \frac{88}{7} \text{ cm}^2$$

OR

(iii) Area of circle =
$$\pi r^2 = \frac{22}{7} \times 4 \times 4 = \frac{352}{7} \text{ cm}^2$$

Required area =
$$64 - \frac{352}{7} = \frac{96}{7} \text{ cm}^2$$

37.

Lokesh, a production manager in Mumbai, hires a taxi everyday to go to his office. The taxi charges in Mumbai consists of a fixed charges together with the charges for the distance covered. His office is at a distance of 10 km from his home. For a distance of 10 km to his office, Lokesh paid ₹ 105. While coming back home, he took another route. He covered a distance of 15 km and the charges paid by him were ₹ 155.

Based on the above information, answer the following questions:

- (i) What are the fixed charges?
- (ii) What are the charges per km?
- (iii) If fixed charges are ₹ 20 and charges per km are ₹ 10, then how much Lokesh have to pay for travelling a distance of 10 km?

OR

(iii) Find the total amount paid by Lokesh for travelling 10 km from home to office and 25 km from office to home. [Fixed charges and charges per km are as in (i) & (ii).

Solution (i) Let fixed charge = ₹ x and charges per km = ₹ y x + 10y = 105, x + 15y = 155On solving, x = 5∴ Fixed charge = ₹ 5

(ii) on solving, we get y = 10Charge per km = ₹ 10

(iii) x + 10y = 20 + 10(10) = ₹ 120OR

(iii) Required amount = x + 10y + x + 25y = 2x + 35y = 2(5) + 35(10) = 10 + 350 = ₹ 360

People of a circular village Dharamkot want to construct a road nearest to it. The road cannot pass through the village. But the people want the road at a shortest distance from the centre of the village. Suppose the road starts from A which is outside the circular village (as shown in the figure) and touch the boundary of the circular village at B such that AB = 20 m. Also the distance of the point A from the centre O of the village is 25 m.

Based on the above information, answer the following questions:

If B is the mid-point of AC, then find the distance AC.

1

2

2

- (ii) Find the shortest distance of the road from the centre of the village.
- (iii) Find the circumference of the village.

OR

(iii) Find the area of the village.

Solution (i)
$$AC = AB + BC = 20 + 20 = 40 \text{ m}$$

(ii) Shortest distance OB =
$$\sqrt{25^2 - 20^2} = 15 \text{ m}$$

(iii) Circumference =
$$2\pi(15) = 30\pi \text{ m}$$
 or $\frac{660}{7} \text{ m}$ 1+1

UΚ

Area =
$$\pi (15)^2$$
 = 225 π sq. m or $\frac{4950}{7}$ sq. m
