MODEL QN PAPER -WITH ANSWERS

GOVERNMENT URDU HIGH SCHOOL YALAGONDAPALYA

[NEELSANDRA]

SUBJECT: MATHEMATICS 2018-19

SUMMATIVE ASSESMENT - 1
Class: $9^{\text {th }}$

I. Answer the following [mcq]

$1 \times 7=7$

1. Write the following in Decimal form. $\frac{1}{11}$
A] 0.6
B] 0.7
C] 0.8
D] 0.9
2. All right angles are equal to one another. Name the postulate
A] Postulate 1
B] Postulate 2
C] Postulate 3
D] Postulate 4
3. Name the corresponding angles
A] $\angle 1$ and $\angle 3$
B] $\angle 1$ and $\angle 2$
C] $\angle 1$ and $\angle 4$
D] $\angle 1$ and $\angle 5$
4.If a transversal intersects two lines such that either
[a] any one pair of corresponding angles is equal , or
[b] any one pair of alternate interior angles is equal, or

[c] any one pair of interior angles on the same side of the transversal is supplementary, then the lines are
Parallel. [d] All the three.
4. The degree of the polynomial is: $x^{5}-x^{4}+3$
A] 2
B] 3
C] 4
D] 5
5. Which of the triangles given below are congruent to triangle ABC in fig 1 ?

A] fig $2 \& 5$
B] fig $\mathbf{3} \& 4$
C] fig $4 \& 5$
D] fig $2 \& 3$
7. In a parallelogram
A] opposite sides are equal
B] opposite angles are equal
C] diagonals bisect each other
D] All the three

Answer the following

$$
1 \times 8=8
$$

8. Expand using identity $(\sqrt{5}-\sqrt{3})^{2}$.

Ans: $(\sqrt{5}-\sqrt{3})^{2}=(\sqrt{5})^{2}+(\sqrt{3})^{2}-2(\sqrt{5}) \quad(\sqrt{3})$
$5+3-2 \sqrt{15}=8-2 \sqrt{15}$
9. State Euclid's Postulate 1 and 2.

Ans:- Postulate 1: A straight line may be drawn from any one point to any other point.
Postulate 2 : A terminated line can be produced indefinitely.
10. If a transversal intersects two lines such that a pair of corresponding angles is equal.. Then

Ans: Then the two lines are parallel to each other.
11. Find the value of the given polynomial : $p(x)=4 x^{2}-3 x+7$ at $x=1$

Ans:- $p(1)=4(1)^{2}+3(1)+7=4+3+7=14$
12. State Remainder Theorem.

Ans:- If $p(x)$ is any polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the liner
Polynomial $x-a$, then the remainder is $p(a)$
13.State ASA congruence rule.

Ans:- Two triangles are congruent if two angles and the included side of one triangle are equal to two angles
And the included side of the other triangle.
14. The sum of the angles of a quadrilateral is

Ans:- $\mathbf{3 6 0}^{\circ}$
15. If a ray stands on a line, then the sum of two adjacent angles so formed will be

Ans: 180°
II. Answer the following:
$2 \times 7=14$
16. Find the six rational numbers between 3 and 4 .

Ans: To find the six rational numbers between 3 and 4 denominator should be made equal to $6+1=7$
Therefore, $3=\frac{3 \times 7}{7}=\frac{21}{7} 4=\frac{4 \times 7}{7}=\frac{28}{7}$
Six rational numbers between 3 and 4 can found by varying the numerator between
21 and $28 \frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$
17. Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$

Ans: $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}$
18. In the fig find the values of x and y and

Then show that $\mathrm{AB} \| \mathrm{CD}$

Solution:- in the given fig a transversal intersects two lines

$A B$ and $C D$ such that
$x+50^{\circ}=180^{\circ}$ [linear pair axiom]
$\Rightarrow \mathrm{x}=180^{\circ}-50^{\circ}=130^{\circ}$
$Y=130^{\circ}$ [Vertically Opposite angles]
$\angle \mathrm{x}=\angle \mathrm{y}=130^{\circ}$ [Alternate angles]
$\therefore \quad \mathrm{AB} \| \mathrm{CD}$ [Converse of alternate angles axiom] Proved.
19. Divde $p(x)$ by $g(x)$, where $p(x)=-x^{3}+3 x^{2}-3 x+5$ and $g(x)=x-2$.

Solution:-
20. ABC is a triangle in whiih altitudes BE and CF to sides

(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$ (ii) $\mathrm{AB}=\mathrm{AC}$, i.e., (ii) ABC is an isosceles triangle.

Solution:- In \triangle ABE and ACF we have
$\mathrm{BE}=\mathrm{CF}$ [given]
$\angle \mathrm{BAE}=\angle \mathrm{CAF}$ [common]
$\angle \mathrm{BEA}=\angle \mathrm{CFA}\left[\right.$ Each 90°]
So $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \quad[\mathrm{AAS}]$ Proved.
Also $\mathbf{A B}=\mathbf{A C} \quad[\mathbf{C P C T}]$

21. Construct the angle of 30°

Stepts of construction:

1. Draw a ray $A B$, with initial point A.
2. With \mathbf{A} as the centre and some convenient radius
 , draw an arc intersecting AB at C .
3. With C as the centre and the same radius as before draw another arc intersecting the previously drawn

Arc at D.
4. Draw ray AD
5. Now taking C and D as the centres and the radius more than $\frac{1}{2} D C$
6. Draw arcs to intersect each other at E.
7.Draw ray AE then $\angle \mathrm{BAE}$ is the required angle 30°.
22. The angles of a quadrilaterl are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral

Solution: Let the measure of the four angles are $3 \mathrm{x}, 5 \mathrm{x}, \mathbf{9 x}, 13 \mathrm{x}$
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}$
$\Rightarrow 30 \mathrm{x}=360^{\circ} \Rightarrow \mathrm{x}=\frac{360^{\circ}}{30}=12^{\circ}$
$3 \mathrm{x}=3 \times 12=36^{\circ}, \quad 5 \mathrm{x}=5 \times 12=60^{\circ}, \quad 9 \mathrm{x}=9 \times 12=108^{\circ}, 13 \mathrm{x}=13 \times 12=156^{\circ}$

The angles of quadrilaterals are $\mathbf{3 6}^{\circ}, \quad 60^{\circ}, \quad 108^{\circ}, ~ 156^{\circ}$
II. Answer [Any One] the following:
$3 \times 1=3$
23. Prove that Angles opposite to equal sides of an isosceles triangle are equal or [Theorem 5.2 page 94]

23[a] Show that the diagonals of a rhombus are perpendicular to each other.[page 124] OR
23[b] Factorise : $8 x^{3}+y^{3}+27 z^{3}-18 x y z \quad$ [page No 79]
II. Answer the following:
$4 \times 2=8$
24. Factorise $x^{3}-23 x^{2}+142 x-120$ [page -74] OR

Prove that The sum of the angles of a triangle is 180° [page 55]
25. Construct a triangle ABC , in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$, and $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=11 \mathrm{~cm}$. [page 115] OR 25(a) Expand using suitable identity: [i] $(2 x+3 y+4 z)^{2} \quad[i i]\left(\frac{3}{2} x+1\right)^{3} \quad$ OR

25[b] Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$ [by long division page No 69]

SUBJECT: MATHEMATICS 2018-19

SUMMATIVE ASSESMENT - 1

Class: $9^{\text {th }}$
Marks:40

I. Answer the following [mcq]

1. Write the following in Decimal form. $\frac{1}{11}$

$$
1 \times 7=7
$$

A] 0.6
B] 0.7
C] 0.8
D] 0.9
2. All right angles are equal to one another. Name the postulate
A] Postulate 1
B] Postulate 2
C] Postulate 3
D] Postulate 4
3. Name the corresponding angles
A] $\angle 1$ and $\angle 3$
B] $\angle 1$ and $\angle 2$
C] $\angle 1$ and $\angle 4$
D] $\angle 1$ and $\angle 5$
4.If a transversal intersects two lines such that either
[a] any one pair of corresponding angles is equal, or
[b] any one pair of alternate interior angles is equal , or

[c] any one pair of interior angles on the same side of the transversal is supplementary, then the lines are Parallel.
[d] All the three.
5. The degree of the polynomial is : $x^{5}-x^{4}+3$
A] 2
B] 3
C] 4
D] 5
6. Which of the triangles given below are congruent to triangle $A B C$ in fig 1 ?

A] fig $2 \& 5$
B] fig $\mathbf{3} \& 4$
C] fig $4 \& 5$
D] fig $2 \& 3$
7. In a parallelogram
A] opposite sides are equal
B] opposite angles are equal
C] diagonals bisect each other
D] All the three

Answer the following
$1 \times 8=8$
8. Expand using identity $(\sqrt{5}-\sqrt{3})^{2}$.
9. State Euclid's Postulate 1 and 2.
10. If a transversal intersects two lines such that a pair of corresponding angles is equal.. Then
11. Find the value of the given polynomial : $p(x)=4 x^{2}-3 x+7$ at $x=1$
12. State Remainder Theorem.
13.State ASA congruence rule.
14. The sum of the angles of a quadrilateral is
15. If a ray stands on a line, then the sum of two adjacent angles so formed will be
II. Answer the following:
16. Find the six rational numbers between 3 and 4 .
17. Rationalise the denominator of $\frac{1}{2+\sqrt{3}}$
18. In the fig find the values of x and y and

Then show that $\mathrm{AB} \| \mathrm{CD}$
19. Divde $p(x)$ by $g(x)$, where $p(x)=-x^{3}+3 x^{2}-3 x+5$ and $g(x)=x-2$.
20. ABC is a triangle in which altitudes BE and CF to sides
$A C$ and $A B$ are equal [see fig] show that
(i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$ (ii) $\mathrm{AB}=\mathrm{AC}$, i.e.
(ii) , (ii) ABC is an isosceles triangle.
21. Construct the angle of 30°
22. The angles of a quadrilaterl are in the ratio $3: 5: 9: 13$.

Find all the angles of the quadrilateral
II. Answer [Any One] the following:

$3 \times 1=3$
23. Prove that Angles opposite to equal sides of an isosceles triangle are equal OR

23[a] Show that the diagonals of a rhombus are perpendicular to each other. OR
23[b] Factorise: $8 x^{3}+y^{3}+27 z^{3}-18 x y z$
II. Answer the following:
24. Factorise $x^{3}-23 x^{2}+142 x-120 \quad O R$

Prove that The sum of the angles of a triangle is 180°
25. Construct a triangle ABC , in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$, and $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=11 \mathrm{~cm}$. OR25(a) Expand using suitable identity: [i] $(2 x+3 y+4 z)^{2} \quad[i i]\left(\frac{3}{2} x+1\right)^{3} \quad$ OR

25[b] Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$

