										PH	YU	12	
No. of	Printed	Pages: 4			Register	Number							
11				PA	ART – II	I							
				(இயற்ட	பியல்	/ PHYS	SICS)					
				(Ei	nglish \	/ersion)							
Time /	Allowe	d : 2	2.00 Ho	urs]				[N	laxiı	mum	Mar	ks	: 50
Instru	ctions	: (1)	Chec	k the questio	n pape	er for fair	ness	of p	print	ting.	lf the	ere	
			is any	y lack of fairn	ess, inf	orm the	Hall	Sup	erv	isor i	mm	edia	tely.
		(2)	Use E	Blue or Black	ink to v	vrite and	unde	ərlir	ie a	nd p	enci	l to d	draw
		()	diagr	ams.						•			
Note	: (i)	Answer all t	the que	estions.							10>	<1=	10
	(ii)	Choose the	e most	appropriate a	answer	from th	e giv	en 1	four	r alte	rnat	ives	and
		write the op	otion co	ode and the c	orresp	onding a	answe	ər.					
1.	Roun	d of the follo	wing n	umber 19.95	into thr	ree signi	ficant	t fig	ure	s.			
	(a)	19.9	(b)	20.0	(C)	20.1		(d)		19.5			
2.	Plane	angle and s	olid an	gle have									
	(a)	Units but no	o dimei	nsions	(b)	Dimens	sions	but	no	unite	6		
	(c)	No units an	d no d	mensions	(d)	Both ur	nits a	nd d	dim	ensio	ons		
3.	lf a pa	ar icle has ne	egative	velocity and	negativ	ve accele	eratio	n, it	s s	peed			
	(a)	increases	(b)	decreases	(c)	remains	s san	ne		(d)	ze	ero	
4	Parse	ec is the unit	of										
	(a)	time	(b)	distance	(c)	frequer	су	(d)	acce	elera	tion	
										[Tur	n ov	er	

PHYU12

5.	5. A train of 150 m length is going towa ds North direction at a speed of 10m/s.							ed of 10m/s.
	A par	rot flies at the	e speed of 5m/s towards South direction parallel to the railways					
	tract.	The t me take	en by t	he parrot to c	ross tł	ne train is		
	(a) 12	s	(b)	8 s	(c)	15 s	(d)	10 s
6.	If the	velocity is \vec{v} =	= 2î +	$t^2\hat{j}-9\hat{k}$, ther	n the m	nagnitude of a	acceler	ration at t = 0.5 s
	is							
	(a)	1m s ⁻²	(b)	2 m s ⁻²	(c)	zero	(d)	-1 m s ⁻²
7.	lf a pa	article execute	es unifo	orm circular n	notion	in the xy plan	e in clo	ock wise direction,
	then t	he angular ve	elocity	is in				
	(a)	+y direction	ı (b)	+z direction	(c)	-z direction	(d)	-x direction
8.	Whick	n of the follow	/ing pa	irs of physica	al quar	ntities have no	ot same	e dimension?
	(a)	force and to	rque		(b)	torque and e	energy	
	(c)	work and en	nergy		(d)	Stress and p	oressui	re
9.	An ob	ject is droppe	ed in a	n unknown pl	anet fr	om height 50	m, it re	eaches the ground
	in 2 s	. The acceler	ration	due to gravity	in this	unknown pla	anet is	
	(a)	g = 20 m s ²	² (b)	g = 25 m s ⁻²	² (c)	g = 15 m s ⁻²	² (d)	$g = 30 \text{ m s}^{-2}$
10.	The v	elocity of a pa	article	v at an instar	nt t is g	given by $v = i$	at +bt ²	² . The dimensions
	of b is	6						
	(a)	[L]	(b)	[LT ⁻¹]	(c)	[LT ⁻²]	(d)	[LT ⁻³]

2

PART – II

Note :	Answer any five questions	. Question No.	18 is compulsory.	5x2=10
--------	----------------------------------	----------------	-------------------	--------

- 11. Give some examples for projectile motion.
- 12. Define light year.
- 13. Write down the kinematic equations for angular motion.
- 14. What are the uses of dimensional analysis?
- 15. What is meant by equal vectors?
- 16. Write principle of homogeneity of dimensions.
- 17. Write the assumptions need to study about the projectile motion.
- 18. From a point on the ground, the top of a tree is seen to have an angle of elevation 45°. The distance between the tree and a point is 50 m. Calculate the height of the tree?

PART – III

Note : Answer **any five** questions. Question No **26** is compulsory. 5x3=15

- 19. Check the correctness of the equation $\frac{1}{2}$ mv² = mgh using dimensional analysis method.
- 20. Two vectors are given as $\vec{r} = 2\vec{i} + 3\vec{j} + 5\vec{k}$ and $\vec{F} = 3\vec{i} 2\vec{j} + 4\vec{k}$. Find the resultant vector $\vec{\tau} = \vec{r} \times \vec{F}$
- 21. Write any three rules for determining significant figures with examples.

[Turn over

PHYU12

- 22. Explain the subtraction of vectors
- 23. What are the limita ions of dimensional analysis?
- 24. Derive the relation between linear velocity and angular velocity.
- 25. Explain the propagation of errors in addition.
- 26. The velocity of three particles A, B, C are given below. Which particle travels at the

greatest speed? $\bar{v}_A = 3\vec{\iota} - 5\vec{j} + 2\vec{k}$; $\bar{v}_B = \vec{\iota} + 2\vec{j} + 3\vec{k}$; $\bar{v}_C = 5\vec{\iota} + 3\vec{j} + 4\vec{k}$

3x5 = 15

PART – IV

- **Note :** Answer **all** the questions.
- 27 Convert 76 cm of mercury pressure into Nm² using the method of dimensions.

(OR)

Write a note on triangulation method and radar method to measure larger distances.

28. Explain in detail the various types of errors

(OR)

Discuss any five properties of scalar and vector products.

29. Explain in detail the triangle law of addition.

(OR)

Derive the kinematic equations of motion for constant acceleration.

 $-\infty \Delta \infty \Phi \infty \Phi \infty \Phi \infty -$

1

HIGHER SECONDARY FIRST YEAR: FIRST MID – TERM TEST: AUGUST 2022 PHYSICS ANSWER KEY

Note:

- 1. Answers written with **Blue** or **Black ink** only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the **option code** and the **corresponding answer**.
- 3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

PART – I

Answer all the questions.

10x1=10

Q. No.		Answer	Q. No.		Answer
1	(b)	20.0	6	(a)	1m s ⁻²
2	(a)	Units but no dimensions	7	(c)	-z direction
3	(a)	increases	8	(a)	force and torque
4	(b)	distance	9	(b)	g = 25 m s ⁻²
5	(d)	10 s	10	(d)	[LT-3]

PART – II

Answer any five questions. Question numbe 18 is compulsory.

5x2=10

11	Exar	nples for projectile motion.		
	1.	An object dropped from window of a moving train		
	2.	A bullet fired from a rifle.	Any	
	3.	A ball thrown in any direction.	4x½ =2	
	4.	A javelin or shot put thrown by an athlete		
	5.	A jet of water issuing from a hole near the bottom of a water tank.		
12	Light	year (Distance travelled by light in vacuum in one year)		
	1 Light Year = 9.467 × 10 ¹⁵ m			

13	1. $\omega = \omega_0 + \alpha t$ 2. $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ 3. $\omega^2 = \omega_0^2 + 2\alpha \theta$ 4. $\theta = \frac{(\omega + \omega_0)t}{2}$	2						
14	Uses of dimensional analysis							
	1. Convert a physical quantity from one system of units to another .	2						
	2. Check the dimensional correctness of a given physical equation							
	3. Establish relations among various physical quantities							
15	Two vectors \vec{A} and \vec{B} are said to be equal when they have equal magnitude							
	and same direction and represent the same physical quantity.	2						
16	Principle of homogeneity of dimensions.							
	The principle of homogeneity of dimensions' states that the dimensions of all							
	the terms in a physical expression should be the same. For example, in the	2						
	physical expression $v^2 = u^2 + 2as$, the dimensions of v^2 , u^2 and 2 as are the							
	same and equal to [L ² T ⁻²].							
17	Assumptions need to study about the projectile motion.							
	i) Air resistance is neglected.							
	ii) The effect due to rotation of Earth and curvature of Earth is negligible.	2						
	iii) The acceleration due to gravity is constant in magnitude and direction							
	at all points of the motion of the projectile.							
18	θ = 45°, The distance between the ree and a point <i>x</i> = 50 m,							
	Height of the tree (h)=?							
	For triangulation method tan $\theta = \frac{h}{x}$							
	h = x tan θ 1 Mark; = 50 × tan 45 ⁰ ; = 50 × 1 ½ Mark	~						
	h = 50.0 m; The height of the tree is 50.0 m ½ Mark							

PART – III

Answer **any five** questions. Question number **26 is compulsory**.

5x3=15

19	Dimensional formula for 1/2 mv ² = [M][LT ⁻¹] ² =[ML ² T ⁻²] 1 Mark						
	Dimensional formula for mgh = [M][LT- ²][L]=[ML ² T ⁻²] 1 Mark						
	[ML ² T ⁻²] = [ML ² T ⁻²] 1 Mark						
	Both sides are dimensionally the same, hence the equations $\frac{1}{2}$ mv ² = mgh is						
	dimensionally correct.						
20	$\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 3 & -2 & 4 \end{vmatrix} 1 \text{ Ma k}$ = $(12 - (-10)\hat{\imath} + (15 - 8)\hat{\jmath} + (-4 - 9)\hat{k}$; 1 Mark $\vec{\tau} = 22\hat{\imath} + 7\hat{\jmath} - 13\hat{k}$ 1 Mark	3					

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

21	Signif	ficant figures.	
	1.	All non-zero digits are significant. Ex.1342 has four significant figures	
	2.	All zeros between two non-zero digits are significant.	
		Ex. 2008 has four signif cant figures.	
	3.	All zeros to the right of a non-zero digit but to the left of a decimal point	
		are significant. Ex. 30700. has five significant figures	
	4.	The number without a decimal point, the terminal or trailing zero(s) are	
		not significant. Ex. 30700 has three significant figures.	
		All zeros are significant if they come from a measurement	Δον
		Ex. 30700 m has five significant figures	3v1=3
	5.	If the number is less than 1, he zero (s) on the right of the decimal	571-5
		point but to left of the first non-zero digit are not significant.	
		Ex. 0 00345 has three significant figures.	
	6.	All zeros to the right of a decimal point and to the right of non-zero digit	
		are significant. Ex. 40.00 has four significant figures and 0.030400 has	
		five significant figures.	
	7.	The number of significant figures does not depend on the system of	
		units used 1.53 cm, 0.0153 m, 0.0000153 km, all have three significant	
		figures.	
22	i)	For two non-zero vectors \vec{A} and \vec{B}	
	which	are inclined to each other at an angle $\int_{\vec{B}_{-}\vec{A},\vec{B}}$	
	θ, the	e difference $\vec{A} - \vec{B}$ is obtained as \vec{B}	
	follow	vs. First obtain – B as in Figure. The	
	angle	between \vec{A} and $-\vec{B}$ is 180 $-\theta$. The	
	differe	ence $\vec{A} - \vec{B}$ is the same as the resultant	
	o Ă a	nd – \vec{B} . – \vec{B} / 180 – θ	
	We	can write $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$ and $\vec{R} = \vec{A} - \vec{B}$	
	using	the equat on, we have	3
	ii)	$\left \overline{A} + \overline{B}\right = \sqrt{A^2 + B^2 + 2AB \cos\theta}$, we1 Mark	
		have $ \vec{A} - \vec{B} = \sqrt{A^2 + B^2 + 2AB \cos(180 - \theta)}$	
	iii)	since, $\cos(180 - \theta) = -\cos\theta$. we get,	
		$\left \vec{A} - \vec{B}\right = \sqrt{A^2 + B^2 - 2AB \cos\theta}$ 1 Mark	
		Again from the Figure 2 19, and using an equation similar to equation	
		$\tan \alpha_2 = \frac{B \sin(180 - \theta)}{A + B \cos(180 - \theta)} \qquad1 \text{ Mark}$	
	iv)	But sin(180 – θ) = sin θ , hence we get, tan $\alpha_2 = \frac{B \sin \theta}{A B \cos \theta}$	
		A-D 050	

23	Limita	ations of dimensional analysis	
	1.	This method gives no information about the dimensionless constants in	
		the formula like 1, 2,π,e, etc.	
	2.	This method cannot decide whether the given quantity is a vector or a	
		scalar.	
	3.	This method is not suitable to derive relations involving trigonometric,	
		exponential and logarithmic functions.	3
	4.	It cannot be applied to an equation involving more than three physical	
		quantities.	
	5.	It can only check on whether a physical relation is dimensionally	
		correct but not the correctness of the relation. For example, using	
		dimensional analysis, s = ut + $\frac{1}{3}$ at ² is dimensionally correct whereas the	
		correct relation is $s = ut + \frac{1}{2}at^2$	
24	1)	Consider an object moving along a circle of	
		radius r. In a time Δt , the object travels.	
		An arc distance Δs as shown in Figure.	
		The corresponding angle subtended is $\Delta \theta$ /	
	2)	The Δs can be written in terms of $\Delta \theta$ as,	
		$\Delta s = r\Delta \theta$ In a time Δt , we have $\frac{\Delta s}{\Delta t} = r \frac{\Delta \theta}{\Delta t}$	3
		In the limit $\Delta t \rightarrow 0$, the above equation	
		becomes $\frac{ds}{dt} = r\omega$ (1)	
	3)	Here $\frac{ds}{dt}$ is linear speed (<i>v</i>) which is tangential to the circle and ω is	
		angular speed. So equation (1) becomes $v = r\omega$. Which	
		gives the relation between linear speed and angular speed.	
25	Error	in the sum of two quantities:	
	Let <i>L</i>	ΔA and ΔB be the absolute errors in the two quantities A and B	
	respe	ectively.	
	Then	, Measured value of A = A $\pm \Delta A$; Measured value of B = B $\pm \Delta B$	
	Cons	ider the sum, Z = A + B	
	The e	error ΔZ in Z is then given by	3
	Z±∆	$Z = (A \pm \Delta A) + (B \pm \Delta B) ; = (A + B) \pm (\Delta A + \Delta B)$	-
	= Z ±	$(\Delta A + \Delta B)$ (or) $\Delta Z = \Delta A + \Delta B$	
	The r	maximum possible error in the sum of two quantities is equal to the sum	
	of the	e absolute errors in the individual quantities.	

26 Speed of A =
$$|\bar{v}_A| = \sqrt{(3)^2 + (-5)^2 + (2)^2}$$
; $= \sqrt{9 + 25 + 4}$; $= \sqrt{38}$ ms⁻¹
Speed of B = $|\bar{v}_B| = \sqrt{(1)^2 + (2)^2 + (3)^2}$; $= \sqrt{1 + 4 + 9}$; $= \sqrt{14}$ ms⁻¹
Speed of C = $|\bar{v}_C| = \sqrt{(5)^2 + (3)^2 + (4)}$; $= \sqrt{25 + 9 + 16}$; $= \sqrt{50}$ ms⁻¹
The particle C has the greatest speed $\sqrt{50} > \sqrt{38} > \sqrt{14}$
 $3 \times 1=3$

PART – IV

Answer **all t**he questions.

3x5=15

5

27 In cgs system 76 cm of mercury pressure = 76 × 13.6 × 980 dyne cm⁻²
The dimensional formula of pressure P is [ML⁻¹T⁻²] -----1 Mark
P₁[M₁^a L₁^b T₁^c] = P₂[M₂^a L₂^b T₂^c] ; P₂ = P₁[M₁]^a [L₁]^b [T₁]^c -----1 Mark
M₁ = 1g M₂ = 1kg; L₁ = 1 cm, L₂ = 1m; T₁ = 1 s, T₂ = 1s
As a = 1, b= -1, and c = -2 ;
Then P₂ = 76 × 13.6 × 980
$$[\frac{14kg^{11}}{1kg}]^{1} [\frac{1cm}{1m}]^{-1} [\frac{1s}{1s}]^{-2} -----1$$
 Mark
= 76 × 13.6 × 980 $[\frac{10^{-2} Mg^{2}}{1kg}]^{1} [\frac{10^{-2} m}{1kg}]^{-1} [\frac{1s}{1s}]^{-2} -----1$ Mark
= 76 × 13.6 × 980 $[\frac{10^{-3} kg^{2}}{1kg}]^{1} [\frac{10^{-2} m}{1kg}]^{-1} [\frac{1s}{1s}]^{-2} -----1$ Mark
= 76 × 13.6 × 980 × [10⁻³] × 10²
P₂ = 1.01 × 10⁵ Nm⁻² -----1 Mark
(OR)
Triangulation method for the height of an accessible object: (2 ½ Marks)
Let AB = h be the height of the tree or tower to be
measured.
Let C be the point of observation at distance
x from B. Place a range finder at C and measure
the angle of elevation, ∠ACB = 0 as shown in
Figure. From right angled triangle ABC,
tanθ = $\frac{AB}{BC} = \frac{h}{x} (or)$ height h = x tan 0
Knowing the distance x, the height h can be
determined.
RADAR method: (2 ½ Marks)
The word RADAR stands for Radio Detection and
Ranging. Radar can be used to measure
accurately the distance of a nearby planet such as
Mars In this method, radio waves are sent from transmitters which, after
reflection from the planet, are detected by the receiver.

	By measuring, the time interval (t) between the instants the radio waves are	
	sent and received, the distance of the planet can be determined as $d = \frac{v \times t}{2}$.	
	where v is the speed of the radio wave.	
	As the time taken (t) is for the distance covered during the forward and	
	backward path of the radio waves, it is divided by 2 to get the actual distance	
	of the object. This method can also be used to determine the height, at which	
	an aero-plane flies from the ground.	
28	Systematic errors:	
	Systematic errors are reproducible inaccuracies that are consistently in the	
	same direction.	
	Instrumental errors:	
	When an instrument is not calibrated properly at the time of manufacture,	
	these erro s can be corrected by choosing the instrument carefully.	
	Imperfections in experimental technique or procedure:	
	These errors arise due to the limitations in the experimental arrangement. To	
	overcome these, necessary correction has to be applied.	
	Personal errors:	
	These errors are due to individuals performing the experiment, may be due to	
	incorrect initial setting up of the experiment or carelessness of the individual	Any 5
	making the observation due to improper precautions	5x1=5
	Errors due to external causes:	
	The change in the external conditions during an experiment can cause error	
	in measurement. For example, changes in temperature, humidity, or	
	pressure during measurements may affect the esult of the measurement.	
	Least count error:	
	Least count is the smallest value that can be measured by the measuring	
	instrument, and the error due to this measurement is least count error	
	Random errors:	
	Random errors may arise due to random and unpredictable variations in	
	experimental conditions like pressure, temperature, voltage supply etc.	
	Errors may also be due to personal errors by the observer who performs the	
	experiment. Random errors are sometimes called "chance error"	
	It can be minimized by repeating the observations a large number of	
	measurements are made and then the arithmetic mean is taken.	
	Gross Error: The error caused due to the shear carelessness of an observer	
	is called gross error. These errors can be minimized only when an observer	
	is careful and mentally alert.	

_		
Prop	erties of scalar products	
1)	The product quantity A . B is always a scalar. It is positive if the angle	
	between the vectors is acute (i e., < 90°) and negative if the angle	
	between them is obtuse (i.e. 90°<θ< 180°).	
2)	The scalar product is commutative, i.e. $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$	
3)	T e vectors obey distributive law i.e. \vec{A} . (\vec{B} + \vec{C}) = \vec{A} . \vec{B} + \vec{A} . \vec{C}	
4)	The angle between the vectors $\theta = \cos -1\left[\frac{\vec{A} \cdot \vec{B}}{AB}\right]$	
5)	The scalar product of two vectors will be maximum when $\cos \theta = 1$,	
	i.e. $\theta = 0^{\circ}$, i.e., when the vectors are parallel; $(\vec{A} \cdot \vec{B})_{max} = AB$	
6)	The scalar product of two vectors will be minimum, when $\cos \theta = -1$,	
	i.e. θ = 180° (\vec{A} \vec{B} m = – AB when the vectors are anti-parallel	
7)	If two vectors \vec{A} and \vec{B} , are perpendicular to each other than their	
	sca ar Product \vec{A} . \vec{B} = 0 , because Cos 90 ^o =0. Then he vectors \vec{A}	
	and \vec{B} . are said to be mutually orthogonal.	
8)	The scalar product of a vector with itself is termed as self-dot product	
	and is given by $(\vec{A})^2 = \vec{A} \cdot \vec{A} = AA \cos \theta = A^2$. Here angle $\theta = 0^\circ$	Δηγ
	The magnitude or norm of the vector \vec{A} is $ \vec{A} = A = \sqrt{\vec{A} \cdot \vec{A}}$	5x1=5
9)	In case of a unit vector \hat{n} , $\hat{n} \cdot \hat{n} = 1 \times 1 \times \cos 0 = 1$.	
	For example, \hat{i} . $\hat{i} = \hat{j}$. $\hat{j} = \hat{k}$. $\hat{k} = 1$	
10)	In the case of orthogonal unit vectors \hat{i} , \hat{j} and \hat{k} \hat{i} . $\hat{j} = \hat{j}$, $\hat{k} = \hat{k}$. $\hat{i} = 1.1$	
	$\cos 90^{\circ} = 0$	
11)	In terms of components the scalar product of $ec{A}$ and $ec{B}$ can be written	
	As \vec{A} . \vec{B} = (A _x $\hat{\imath}$ + A _y $\hat{\jmath}$ + A _z \hat{k}) . (B _x $\hat{\imath}$ + B _y $\hat{\jmath}$ + B _z \hat{k})	
	= $A_xB_x + A_yB_y + A_zB_z$ with all other terms zero.	
	The magnitude of vecto $ \vec{A} $ is given by $ \vec{A} = A = \sqrt{A_x^2 + A_y^2 + A_z^2}$	
Prop	erties of vector (cross) product.	
1)	T e vector product of any two vectors is always a other vector whose	
-	direction is perpendicular to the plane containing these two vectors,	
	i.e., orthogonal to both the vectors \vec{A} and \vec{B} , even though the vectors \vec{A}	
	and \vec{B} may or may not be mutually orthogonal.	
2)	The vector product of two vectors is not commutative, i.e., $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$	
,	But. $\vec{A} \times \vec{B} = -[\vec{B} \times \vec{A}]$ Here it is worthwhile to note that	
	$ \vec{A} \times \vec{B} = \vec{B} \times \vec{A} = AB Sin \theta.$	
	i.e in the case of the product vectors $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$ the magnitudes are	
	equal but directions are opposite to each other	

	3)	The vector product of two vectors will have maximum magnitude when	
		sin θ = 1, i.e., θ = 90 ^o i.e., when the vectors \vec{A} and \vec{B} , are orthogonal to	
		each other. $(\vec{A} \times \vec{B})_{max} = AB\hat{n}$	
	4)	The vector product of two non-zero vectors will be minimum when sin	
		$\theta = 0$, i e., $\theta = 0^{\circ} \text{ or } 180^{\circ} [\vec{A} \times \vec{B}]_{min} = 0$ i.e., the vector product of two	
		n n-zero vectors vanishes, if the vectors are either parallel or	
		anti-parallel.	
	5)	The self–cross product, i.e., product of a vector with itself is the null	
		vector $\vec{A} \times \vec{A} = AA$ Sin $\theta \hat{n} = \vec{0}$ In physics the null vector $\vec{0}$ is simply	
		denoted as zero.	
	6)	The self–vector products of unit vectors are thus zero.	
		$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = \vec{0}$	
	7)	In the case of orthogonal unit vectors,	
		<i>i</i> , <i>j</i> , \hat{k} in accordance with the right hand screw rule: $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$,	
		$\hat{k} \times \hat{i} = \hat{j}$. Also, since the cross product is not commutative,	
		$\hat{j} \times \hat{i} = -k, k \times \hat{j} = -\hat{i}$ and $\hat{i} \times k = -\hat{j}$	
	8)	In terms of components, the vector product of two vectors A and B \rightarrow	
		$\vec{k} \times \vec{R} = \begin{bmatrix} \vec{l} & \vec{j} & \vec{k} \end{bmatrix}$	
		$\begin{array}{c} A \times B - \begin{bmatrix} A_X & A_Y & A_Z \\ B_Y & B_Y & B_Z \end{bmatrix}$	
		$= \vec{\iota} (A_v B_z - A_z B_v) + \vec{\iota} (A_z B_x - A_x B_z) + \vec{k} (A_x B_v - A_v B_x)$	
	9)	If two vectors \vec{A} and \vec{B} form adjacent sides in a parallelogram, then	
	,	the magnitude of $ \vec{A} \times \vec{B} $ will give the area of the parallelogram as	
		represented graphically in Figure.	
29	1)	Represent the vectors \overrightarrow{A} and \overrightarrow{B} by the two adjacent sides of a triangle	
		taken in the same order Then the	
		resultant is given by the third side of	
		the triangle taken in the opposite $\vec{R} = \vec{A} + \vec{B}$	
		order.	
	2)	The head of the first vector \vec{A} is	
		connected to the tail of the second \vec{A} \vec{A}	
		vector \vec{B} . Let θ be the angle between \vec{A} and \vec{B} . Then \vec{R} is the	
		resultant vector connecting the tail of the first vector \vec{A} to the head of	
		the second vector B	5
	3)	The magnitude of \vec{R} (resultant) is given geometrically by the length	
		of R (OQ) and the direction of the resultant vector is he angle	
		between \vec{R} and \vec{A} Thus we write $\vec{R} = \vec{A} + \vec{B}$. $\because \vec{OQ} = \vec{OP} + \vec{PQ}$	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

Magnitude of resultant vector: Consider the triangle ABN, which is ob ained by extending the side 4) OA to ON. ABN is a right angled triangle. Ŕ $\cos \theta = \frac{AN}{R} \therefore AN = B \cos \theta$ and B sin θ $\sin \theta = \frac{BN}{R} \therefore BN = B \sin \theta$ α For ∆OBN, Á we have $OB^2 = ON^2 + BN^2$ \Rightarrow R² = (A + B Cos θ)² + (B S n θ)² \Rightarrow R² = A² + B²cos² θ + 2ABcos θ + B²sin² θ \Rightarrow R² = A² + B² (cos² θ + sin² θ) + 2ABcos θ \Rightarrow R = $\sqrt{A^2 + B^2 + 2AB \cos\theta}$ which is the magnitude of the resultant of A and B Direction of resultant vectors: If θ is the angle between \vec{A} and \vec{B} , then 5) $|\vec{A} + \vec{B}| = \sqrt{A^2 + B^2 + 2AB \cos\theta}$ If \vec{R} makes an angle α with \vec{A} , then in $\triangle OBN$, tan $\alpha = \frac{BN}{ON} = \frac{BN}{OA + AN}$ $\tan \alpha = \left(\frac{B \sin \theta}{A + B \cos \theta}\right)$; $\alpha = \tan^{-1} \left(\frac{B \sin \theta}{A + B \cos \theta}\right)$ (OR) Velocity - time relation: 11/2 Marks $a = \frac{dv}{dt}$ or dv = a .dt1) Integrating both sides with the condition that as time changes from 0 to t, the velocity changes from u to v. For the constant acceleration, $\int_{u}^{v} dv = \int_{0}^{t} a dt$ $= \mathbf{a} \int_{u}^{v} dt \implies [v]_{u}^{v} = \mathbf{a} [t]_{0}^{t} \quad \text{-------(1)}$ v - u = at (or) v = u + atDisplacement – time relation: 11/2 Marks $v = \frac{ds}{dt}$ or ds = v dt and since v = u + at We get ds = (u + at)dt . 2) Assume that initially at time t = 0, the particle started from the origin. At a later time, t, the particle displacement is s. Further assuming that acceleration is time independent, we have $\int_0^s ds$ $=\int_{0}^{t} udt + \int_{0}^{t} atdt$ or s = ut + $\frac{1}{2}$ at² ------(2)

5

