## PHYU12

No. of Printed Pages: 4
Register Number


## 11



Time Allowed
(1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

Note: (i) Answer all the questions.
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. Round of the following number 19.95 into three significant figures.
(a) 19.9
(b) 20.0
(c) 20.1
(d) 19.5
2. Plane angle and solid angle have
(a) Units but no dimensions
(b) Dimensions but no units
(c) No units and no d mensions
(d) Both units and dimensions
3. If a par icle has negative velocity and negative acceleration, its speed
(a) increases
(b) decreases
(c) remains same
(d) zero

4 Parsec is the unit of
(a) time
(b) distance
(c) frequency
(d) acceleration
[Turn over

## PHYU12

5. A train of 150 m length is going towa ds North direction at a speed of $10 \mathrm{~m} / \mathrm{s}$.

A parrot flies at the speed of $5 \mathrm{~m} / \mathrm{s}$ towards South direction parallel to the railways tract. The $t$ me taken by the parrot to cross the train is
(a) 12 s
(b) 8 s
(c) 15 s
(d) 10 s
6. If the velocity is $\vec{v}=2 \hat{\imath}+t^{2} \hat{\jmath}-9 \hat{k}$, then the magnitude of acceleration at $\mathrm{t}=0.5 \mathrm{~s}$ is
(a) $1 \mathrm{~m} \mathrm{~s}^{-2}$
(b) $2 \mathrm{~m} \mathrm{~s}^{-2}$
(c) zero
(d) $\quad-1 \mathrm{~m} \mathrm{~s}^{-2}$
7. If a particle executes uniform circular motion in the xy plane in clock wise direction, then the angular velocity is in
(a) +y direction
(b) $+z$ direction
(c) -z direction
(d) $-x$ direction
8. Which of the following pairs of physical quantities have not same dimension?
(a) force and torque
(b) torque and energy
(c) work and energy
(d) Stress and pressure
9. An object is dropped in an unknown planet from height 50 m , it reaches the ground in 2 s . The acceleration due to gravity in this unknown planet is
(a) $\mathrm{g}=20 \mathrm{~m} \mathrm{~s}^{2}$
(b) $\mathrm{g}=25 \mathrm{~m} \mathrm{~s}^{-2}$
(c) $\mathrm{g}=15 \mathrm{~m} \mathrm{~s}^{-2}$
(d) $\mathrm{g}=30 \mathrm{~m} \mathrm{~s}^{-2}$
10. The velocity of a particle $v$ at an instant t is given by $\mathrm{v}=\mathrm{at}+\mathrm{bt}^{2}$. The dimensions of $b$ is
(a) $[\mathrm{L}]$
(b) $\left[\mathrm{LT}^{-1}\right]$
(c) $\left[\mathrm{LT}^{-2}\right]$
(d) $\left[L T^{-3}\right]$

PART - II
Note : Answer any five questions. Question No. 18 is compulsory. $\quad 5 \times 2=10$
11. Give some examples for projectile motion.
12. Define light year.
13. Write down the kinematic equations for angular motion.
14. What are the uses of dimensional analysis?
15. What is meant by equal vectors?
16. Write principle of homogeneity of dimensions.
17. Write the assumptions need to study about the projectile motion.
18. From a point on the ground, the top of a tree is seen to have an angle of elevation $45^{\circ}$. The distance between the tree and a point is 50 m . Calculate the height of the tree?

## PART - III

Note : Answer any five questions. Question No 26 is compulsory. $5 \times 3=15$
19. Check the correctness of the equation $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$ using dimensional analysis method.
20. Two vectors are given as $\overrightarrow{\mathrm{r}}=2 \vec{\imath}+3 \vec{\jmath}+5 \vec{k}$ and $\overrightarrow{\mathrm{F}}=3 \vec{\imath}-2 \vec{\jmath}+4 \vec{k}$. Find the resultant vector $\vec{\tau}=\vec{r} \times \vec{F}$
21. Write any three rules for determining significant figures with examples.

## PHYU12

22. Explain the subtraction of vectors
23. What are the limita ions of dimensional analysis?
24. Derive the relation between linear velocity and angular velocity.
25. Explain the propagation of errors in addition.
26. The velocity of three particles $A, B, C$ are given below. Which particle travels at the greatest speed? $\overline{\mathrm{v}}_{\mathrm{A}}=3 \vec{\imath}-5 \vec{\jmath}+2 \vec{k} ; \overline{\mathrm{v}}_{\mathrm{B}}=\vec{\imath}+2 \vec{\jmath}+3 \vec{k} ; \overline{\mathrm{v}}_{\mathrm{C}}=5 \vec{\imath}+3 \vec{\jmath}+4 \vec{k}$ PART - IV

Note : Answer all the questions. $3 \times 5=15$

27 Convert 76 cm of mercury pressure into $\mathrm{Nm}^{2}$ using the method of dimensions. (OR)

Write a note on triangulation method and radar method to measure larger distances.
28. Explain in detail the various types of errors
(OR)
Discuss any five properties of scalar and vector products.
29. Explain in detail the triangle law of addition.
(OR)
Derive the kinematic equations of motion for constant acceleration.

$$
-\infty \pm \infty \Phi \infty \Psi \infty \Omega \infty-
$$

HIGHER SECONDARY FIRST YEAR: FIRST MID - TERM TEST: AUGUST 2022 PHYSICS ANSWER KEY
Note:

1. Answers written with Blue or Black ink only to be evaluated.
2. Choose the most suitable answer in Part A from the given alternatives and write the option code and the corresponding answer.
3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
5. In graphical representation, physical variables for X -axis and Y -axis should be marked.
PART-I

Answer all the questions.

$$
10 \times 1=10
$$

| Q. No. | Answer | Q. No. | Answer |  |  |
| :---: | :--- | :--- | :---: | :--- | :--- |
| 1 | (b) | 20.0 | 6 | (a) | $1 \mathrm{~m} \mathrm{~s}^{-2}$ |
| 2 | (a) | Units but no dimensions | 7 | (c) | -z direction |
| 3 | (a) | increases | 8 | (a) | force and torque |
| 4 | (b) | distance | 9 | (b) | $\mathrm{g}=25 \mathrm{~m} \mathrm{~s}^{-2}$ |
| 5 | (d) | 10 s | 10 | (d) | $\left[\mathrm{LT}^{-3}\right]$ |

## PART - II

Answer any five questions. Question numbe 18 is compulsory.
$5 \times 2=10$

| 11 | Examples for projectile motion. <br> 1. An object dropped from window of a moving train <br> 2. A bullet fired from a rifle. <br> 3. A ball thrown in any direction. <br> 4. A javelin or shot put thrown by an athlete <br> 5. A jet of water issuing from a hole near the bottom of a water tank. | Any $4 x^{1 / 2}=2$ |
| :---: | :---: | :---: |
| 12 | Light year (Distance travelled by light in vacuum in one year) <br> 1 Light Year $=9.467 \times 10^{15} \mathrm{~m}$ | 2 |


| 13 | 1. $\omega=\omega_{0}+\alpha \mathrm{t} \quad$ 2. $\theta=\omega_{0} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \quad$ 3. $\omega^{2}=\omega_{0}^{2}+2 \alpha \theta \quad$ 4. $\theta=\frac{\left(\omega+\omega_{0}\right) \mathrm{t}}{2}$ | 2 |
| :---: | :---: | :---: |
| 14 | Uses of dimensional analysis <br> 1. Convert a physical quantity from one system of units to another. <br> 2. Check the dimensional correctness of a given physical equation <br> 3. Establish relations among various physical quantities | 2 |
| 15 | Two vectors $\vec{A}$ and $\vec{B}$ are said to be equal when they have equal magnitude and same direction and represent the same physical quantity. | 2 |
| 16 | Principle of homogeneity of dimensions. <br> The principle of homogeneity of dimensions' states that the dimensions of all the terms in a physical expression should be the same. For example, in the physical expression $v^{2}=u^{2}+2 a s$, the dimensions of $v^{2}, u^{2}$ and 2 as are the same and equal to $\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]$. | 2 |
| 17 | Assumptions need to study about the projectile motion. <br> i) Air resistance is neglected. <br> ii) The effect due to rotation of Earth and curvature of Earth is negligible. <br> iii) The acceleration due to gravity is constant in magnitude and direction at all points of the motion of the projectile. | 2 |
| 18 | $\theta=45^{\circ}$, The distance between the ree and a point $x=50 \mathrm{~m}$, Height of the tree (h)=? <br> For triangulation method $\tan \theta=\frac{h}{x}$ <br> $h=x \tan \theta$ $\qquad$ 1 Mark; = $50 \times \tan 45^{0} ;=50 \times 1$ $\qquad$ 1/2 Mark <br> $h=50.0 \mathrm{~m}$; The height of the tree is 50.0 m . $\qquad$ $1 / 2$ Mark | 2 |

PART - III
Answer any five questions. Question number 26 is compulsory.

| 19 | Dimensional formula for $1 / 2 \mathrm{mv}^{2}=[\mathrm{M}]\left[\mathrm{LT} \mathrm{T}^{-1}\right]^{2}=\left[\mathrm{ML}^{2 T}-2\right]$ $\qquad$ 1 Mark <br> Dimensional formula for $\mathrm{mgh}=[\mathrm{M}][\mathrm{LT}-2][\mathrm{L}]=\left[\mathrm{ML}^{2 T}-2\right]$ $\qquad$ 1 Mark $\left[\mathrm{ML}^{2 \mathrm{~T}^{-2}}\right]=\left[\mathrm{ML}^{2 \mathrm{~T}^{-2}}\right]$ $\qquad$ 1 Mark <br> Both sides are dimensionally the same, hence the equations $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$ is dimensionally correct. | 3 |
| :---: | :---: | :---: |
| 20 | $\begin{aligned} & \vec{\imath}=\vec{r} \times \vec{F}=\left\|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 5 \\ 3 & -2 & 4 \end{array}\right\| \quad------1 \text { Ma k } \\ & =(12-(-10) \hat{\imath}+(15-8) \hat{\jmath}+(-4-9) \hat{k} \quad ; \quad----------1 \text { Mark } \\ & \overrightarrow{\boldsymbol{\tau}}=\mathbf{2 2} \hat{\imath}+7 \hat{\jmath}-13 \widehat{k} \quad-------1 \text { Mark } \end{aligned}$ | 3 |


| 21 | Significant figures. <br> 1. All non-zero digits are significant. Ex. 1342 has four significant figures <br> 2. All zeros between two non-zero digits are significant. <br> Ex. 2008 has four signif cant figures. <br> 3. All zeros to the right of a non-zero digit but to the left of a decimal point are significant. Ex. 30700. has five significant figures <br> 4. The number without a decimal point, the terminal or trailing zero(s) are not significant. Ex. 30700 has three significant figures. <br> All zeros are significant if they come from a measurement Ex. 30700 m has five significant figures <br> 5. If the number is less than 1, he zero (s) on the right of the decimal point but to left of the first non-zero digit are not significant. Ex. 000345 has three significant figures. <br> 6. All zeros to the right of a decimal point and to the right of non-zero digit are significant. Ex. 40.00 has four significant figures and 0.030400 has five significant figures. <br> 7. The number of significant figures does not depend on the system of units used $1.53 \mathrm{~cm}, 0.0153 \mathrm{~m}, 0.0000153 \mathrm{~km}$, all have three significant figures. | $\begin{gathered} \text { Any } \\ 3 \times 1=3 \end{gathered}$ |
| :---: | :---: | :---: |
| 22 | i) For two non-zero vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ which are inclined to each other at an angle $\theta$, the difference $\vec{A}-\vec{B}$ is obtained as follows. First obtain $-\vec{B}$ as in Figure. The angle between $\vec{A}$ and $-\vec{B}$ is $180-\theta$. The difference $\vec{A}-\vec{B}$ is the same as the resultant o $\vec{A}$ and $-\vec{B}$. <br> We can write $\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$ and using the equat on, we have <br> ii) $\quad\|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}\|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \operatorname{Cos} \theta}$, we $\qquad$ 1 Mark have $\|\vec{A}-\vec{B}\|=\sqrt{A^{2}+B^{2}+2 A B \operatorname{Cos}(180-\theta)}$ <br> iii) since, $\cos (180-\theta)=-\cos \theta$. we get, $\|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}\|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \operatorname{Cos} \theta}$ <br> ----------1 Mark <br> Again from the Figure 2 19, and using an equation similar to equation $\tan \alpha_{2}=\frac{\mathrm{B} \sin (180-\theta)}{\mathrm{A}+\mathrm{B} \cos (180-\theta)} \quad-------1 \text { Mark }$ <br> iv) But $\sin (180-\theta)=\sin \theta$, hence we get, $\tan \alpha_{2}=\frac{\mathrm{B} \sin \theta}{\mathrm{A}-\mathrm{B} \operatorname{os} \theta}$ | 3 |


| 23 | Limitations of dimensional analysis <br> 1. This method gives no information about the dimensionless constants in the formula like $1,2, \ldots \ldots . \pi, e$, etc. <br> 2. This method cannot decide whether the given quantity is a vector or a scalar. <br> 3. This method is not suitable to derive relations involving trigonometric, exponential and logarithmic functions. <br> 4. It cannot be applied to an equation involving more than three physical quantities. <br> 5. It can only check on whether a physical relation is dimensionally correct but not the correctness of the relation. For example, using dimensional analysis, $s=u t+\frac{1}{3}$ at ${ }^{2}$ is dimensionally correct whereas the correct relation is $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$ | 3 |
| :---: | :---: | :---: |
| 24 | 1) Consider an object moving along a circle of radius r . In a time $\Delta t$, the object travels. An arc distance $\Delta s$ as shown in Figure. The corresponding angle subtended is $\Delta \theta$ <br> 2) The $\Delta \mathrm{s}$ can be written in terms of $\Delta \theta$ as, $\Delta s=r \Delta \theta$ In a time $\Delta t$, we have $\frac{\Delta_{s}}{\Delta_{t}}=\mathrm{r} \frac{\Delta \theta}{\Delta t}$ In the limit $\Delta t \rightarrow 0$, the above equation becomes $\frac{d s}{d t}=\mathrm{r} \omega$ $\qquad$ (1) <br> 3) Here $\frac{d s}{d t}$ is linear speed ( $V$ ) which is tangential to the circle and $\omega$ is angular speed. So equation (1) becomes $v=n \omega$. Which gives the relation between linear speed and angular speed. | 3 |
| 25 | Error in the sum of two quantities: <br> Let $\Delta A$ and $\Delta B$ be the absolute errors in the two quantities $A$ and $B$ respectively. <br> Then, Measured value of $A=A \pm \Delta A$; Measured value of $B=B \pm \Delta B$ <br> Consider the sum, $Z=A+B$ <br> The error $\Delta Z$ in $Z$ is then given by $\begin{aligned} & Z \pm \Delta Z=(A \pm \Delta A)+(B \pm \Delta B) ;=(A+B) \pm(\Delta A+\Delta B) \\ & =Z \pm(\Delta A+\Delta B) \text { (or) } \Delta Z=\Delta A+\Delta B \end{aligned}$ <br> The maximum possible error in the sum of two quantities is equal to the sum of the absolute errors in the individual quantities. | 3 |

## 26

Speed of $A=\left|\bar{v}_{A}\right|=\sqrt{(3)^{2}+(-5)^{2}+(2)^{2}} ;=\sqrt{9+25+4} ; ;=\sqrt{38} \mathrm{~ms}^{-1}$ Speed of $B=\left|\bar{v}_{B}\right|=\sqrt{(1)^{2}+(2)^{2}+(3)^{2}} ;=\sqrt{1+4+9} ; ;=\sqrt{14} \mathrm{~ms}^{-1}$ Speed of $C=\left|\bar{v}_{C}\right|=\sqrt{(5)^{2}+(3)^{2}+(4)} ;=\sqrt{25+9+16} ; ;=\sqrt{50} \mathrm{~ms}^{-1}$

The particle $C$ has the greatest speed $\sqrt{50}>\sqrt{\mathbf{3 8}}>\sqrt{14}$

> PART - IV

Answer all the questions.

$$
3 \times 5=15
$$

27 In cgs system 76 cm of mercury pressure $=76 \times 13.6 \times 980$ dyne $\mathrm{cm}^{-2}$ The dimensional formula of pressure P is $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$ $\qquad$ 1 Mark
$\mathrm{P}_{1}\left[\mathrm{M}_{1}^{\mathrm{a}} \mathrm{L}_{1}^{\mathrm{b}} \mathrm{T}_{1}^{\mathrm{c}}\right]=\mathrm{P}_{2}\left[\mathrm{M}_{2}^{a} \mathrm{~L}_{2}^{\mathrm{b}} \mathrm{T}_{2}^{\mathrm{c}}\right] ; \mathrm{P}_{2}=\mathrm{P}_{1}\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]^{\mathrm{a}}\left[\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right]^{\mathrm{b}}\left[\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right]^{\mathrm{c}}-\cdots----1$ Mark
$M_{1}=1 \mathrm{~g} M_{2}=1 \mathrm{~kg} ; L_{1}=1 \mathrm{~cm}, L_{2}=1 \mathrm{~m} ; \mathrm{T}_{1}=1 \mathrm{~s}, \mathrm{~T}_{2}=1 \mathrm{~s}$
As $a=1, b=-1$, and $c=-2$;
Then $P_{2}=76 \times 13.6 \times 980\left[\frac{1 \mathrm{~kg}}{1 \mathrm{~kg}}\right]^{1}\left[\frac{1 \mathrm{~cm}}{1 \mathrm{~m}}\right]^{-1}\left[\frac{1 \mathrm{~s}}{1 \mathrm{~s}}\right]^{-2}-------1$ Mark

$$
\begin{aligned}
& =76 \times 13.6 \times 980\left[\frac{10^{-3} \mathrm{~kg}}{1 \mathrm{~kg}}\right]^{1}\left[\frac{10^{-2} \mathrm{~m}}{1 \mathrm{~m}}\right]^{-1}\left[\frac{1 \mathrm{~s}}{1 \mathrm{~s}}\right]^{-2}-------1 \text { Mark } \\
& =76 \times 136 \times 980 \times\left[10^{-3}\right] \times 10^{2} \\
& \mathrm{P}_{2}=1.01 \times 10^{5} \mathrm{Nm}^{-2}-------1 \text { Mark }
\end{aligned}
$$

(OR)
Triangulation method for the height of an accessible object: ( $2^{1 / 2}$ Marks) Let $A B=h$ be the height of the tree or tower to be measured.
Let $C$ be the point of observation at distance $x$ from B. Place a range finder at C and measure the angle of elevation, $\angle A C B=\theta$ as shown in Figure. From right angled triangle ABC, $\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{h}}{\mathrm{x}}$ (or) height $\mathrm{h}=x \tan \theta$
Knowing the distance $x$, the height h can be determined.
RADAR method: ( $\mathbf{2}^{1 ⁄ 2}$ Marks)
The word RADAR stands for Radio Detection and
Ranging. Radar can be used to measure accurately the distance of a nearby planet such as


Mars In this method, radio waves are sent from transmitters which, after reflection from the planet, are detected by the receiver.

|  | By measuring, the time interval (t) between the instants the radio waves are sent and received, the distance of the planet can be determined as $\mathrm{d}=\frac{\mathrm{vxt}}{2}$. where $v$ is the speed of the radio wave. <br> As the time taken ( t ) is for the distance covered during the forward and backward path of the radio waves, it is divided by 2 to get the actual distance of the object. This method can also be used to determine the height, at which an aero-plane flies from the ground. |  |
| :---: | :---: | :---: |
| 28 | Systematic errors: <br> Systematic errors are reproducible inaccuracies that are consistently in the same direction. <br> Instrumental errors: <br> When an instrument is not calibrated properly at the time of manufacture, these erro s can be corrected by choosing the instrument carefully. <br> Imperfections in experimental technique or procedure: <br> These errors arise due to the limitations in the experimental arrangement. To overcome these, necessary correction has to be applied. <br> Personal errors: <br> These errors are due to individuals performing the experiment, may be due to incorrect initial setting up of the experiment or carelessness of the individual making the observation due to improper precautions <br> Errors due to external causes: <br> The change in the external conditions during an experiment can cause error in measurement. For example, changes in temperature, humidity, or pressure during measurements may affect the esult of the measurement. <br> Least count error: <br> Least count is the smallest value that can be measured by the measuring instrument, and the error due to this measurement is least count error <br> Random errors: <br> Random errors may arise due to random and unpredictable variations in experimental conditions like pressure, temperature, voltage supply etc. <br> Errors may also be due to personal errors by the observer who performs the experiment. Random errors are sometimes called "chance error" <br> It can be minimized by repeating the observations a large number of measurements are made and then the arithmetic mean is taken. <br> Gross Error: The error caused due to the shear carelessness of an observer is called gross error. These errors can be minimized only when an observer is careful and mentally alert. | $\begin{aligned} & \text { Any } 5 \\ & 5 \times 1=5 \end{aligned}$ |

Properties of scalar products

1) The product quantity $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$ is always a scalar. It is positive if the angle between the vectors is acute (i e., $<90^{\circ}$ ) and negative if the angle between them is obtuse (i.e. $90^{\circ}<\theta<180^{\circ}$ ).
2) The scalar product is commutative, i.e. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
3) $\quad T$ e vectors obey distributive law i.e. $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$
4) The angle between the vectors $\theta=\cos -1\left[\frac{\vec{A} \cdot \vec{B}}{A B}\right]$
5) The scalar product of two vectors will be maximum when $\operatorname{Cos} \theta=1$, i.e. $\theta=0^{0}$, i.e., when the vectors are parallel; $(\vec{A} \cdot \vec{B})_{\max }=A B$
6) The scalar product of two vectors will be minimum, when $\operatorname{Cos} \theta=-1$, i.e. $\theta=180^{\circ}(\vec{A} \quad \vec{B} m n=-A B$ when the vectors are anti-parallel
7) If two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, are perpendicular to each other than their sca ar Product $\vec{A} \cdot \vec{B}=0$, because Cos $90^{\circ}=0$. Then he vectors $\vec{A}$ and $\vec{B}$. are said to be mutually orthogonal.
8) The scalar product of a vector with itself is termed as self-dot product and is given by $(\vec{A})^{2}=\vec{A} \cdot \vec{A}=A A \operatorname{Cos} \theta=A^{2}$. Here angle $\theta=0^{\circ}$
The magnitude or norm of the vector $\overrightarrow{\mathbf{A}}$ is $|\overrightarrow{\mathbf{A}}|=\mathbf{A}=\sqrt{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{A}}}$

Any
$5 \times 1=5$
9) In case of a unit vector $\hat{n}, \hat{n} \cdot \hat{n}=1 \times 1 \times \operatorname{Cos} 0=1$.

For example, $\hat{\imath} . \hat{\imath}=\hat{\jmath} . \hat{\jmath}=\hat{k} . \hat{k}=1$
10) In the case of orthogonal unit vectors $\hat{\imath}, \hat{\jmath}$ and $\hat{k} \hat{\imath} . \hat{\jmath}=\hat{\jmath} \hat{k}=\hat{k} . \hat{\imath}=1.1$ $\operatorname{Cos} 90^{\circ}=0$
11) In terms of components the scalar product of $\vec{A}$ and $\vec{B}$ can be written As $\vec{A} \cdot \vec{B}=\left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \cdot\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right)$ $=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$ with all other terms zero.
The magnitude of vecto $|\vec{A}|$ is given by $|\vec{A}|=A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$
Properties of vector (cross) product.

1) $\quad \mathrm{T}$ e vector product of any two vectors is always a other vector whose direction is perpendicular to the plane containing these two vectors, i.e., orthogonal to both the vectors $\vec{A}$ and $\vec{B}$, even though the vectors $\vec{A}$ and $\vec{B}$ may or may not be mutually orthogonal.
2) The vector product of two vectors is not commutative, i.e., $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$

But, $\vec{A} \times \vec{B}=-[\vec{B} \times \vec{A}]$ Here it is worthwhile to note that $|\vec{A} \times \vec{B}|=|\vec{B} \times \vec{A}|=A B \operatorname{Sin} \theta$.
i.e in the case of the product vectors $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$ the magnitudes are equal but directions are opposite to each other

|  | 3) 4) $^{\text {4 }}$ | The vector product of two vectors will have maximum magnitude when $\sin \theta=1$, i.e., $\theta=90^{\circ}$ i.e., when the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, are orthogonal to each other. $(\vec{A} \times \vec{B})_{\max }=A B \hat{n}$ <br> The vector product of two non-zero vectors will be minimum when $\sin$ $\theta=0$, ie.,$\theta=0^{0}$ or $180^{\circ}[\vec{A} \times \vec{B}]_{\text {min }}=0$ i.e., the vector product of two n n-zero vectors vanishes, if the vectors are either parallel or anti-parallel. <br> The self-cross product, i.e., product of a vector with itself is the null vector $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{A}}=\mathrm{AA} \operatorname{Sin} \theta \hat{n}=\overrightarrow{0} \operatorname{In}$ physics the null vector $\overrightarrow{0}$ is simply denoted as zero. <br> The self-vector products of unit vectors are thus zero. $\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\widehat{k} \times \hat{k}=\overrightarrow{0}$ <br> In the case of orthogonal unit vectors, <br> $l, \jmath, \hat{k}$ in accordance with the right hand screw rule: $\hat{\imath} \times \hat{\jmath}=\hat{k}, \hat{\jmath} \times \hat{k}=\hat{\imath}$, $\hat{k} \times \hat{\imath}=\hat{\jmath}$. Also, since the cross product is not commutative, $\hat{\jmath} \times \hat{\imath}=-\hat{k}, \hat{k} \times \hat{\jmath}=-\hat{\imath}$ and $\hat{\imath} \times \hat{k}=-\hat{\jmath}$ <br> In terms of components, the vector product of two vectors $\vec{A}$ and $\vec{B}$ $\begin{aligned} & \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\left\|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ A_{X} & A_{Y} & A_{Z} \\ B_{X} & B_{Y} & B_{Z} \end{array}\right\| \\ & =\vec{\imath}\left(\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{z}}-\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{y}}\right)+\vec{\jmath}\left(\mathrm{A}_{\mathrm{z}} \mathrm{~B}_{\mathrm{x}}-\mathrm{A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{z}}\right)+\vec{k}\left(\mathrm{~A}_{\mathrm{x}} \mathrm{~B}_{\mathrm{y}}-\mathrm{A}_{\mathrm{y}} \mathrm{~B}_{\mathrm{x}}\right) \end{aligned}$ <br> If two vectors $\vec{A}$ and $\vec{B}$ form adjacent sides in a parallelogram, then the magnitude of $\|\overrightarrow{\mathbf{A}} \mathbf{x} \overrightarrow{\mathbf{B}}\|$ will give the area of the parallelogram as represented graphically in Figure. |  |
| :---: | :---: | :---: | :---: |
| 29 |  | Represent the vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ by the two adjacent sides of a triangle taken in the same order Then the resultant is given by the third side of the triangle taken in the opposite order. <br> The head of the first vector $\overrightarrow{\mathrm{A}}$ is connected to the tail of the second vector $\vec{B}$. Let $\theta$ be the angle between $\vec{A}$ and $\vec{B}$. Then $\vec{R}$ is the resultant vector connecting the tail of the first vector $\overrightarrow{\mathrm{A}}$ to the head of the second vector $\vec{B}$ The magnitude of $\vec{R}$ (resultant) is given geometrically by the length of $\vec{R}(O Q)$ and the direction of the resultant vector is he angle between $\overrightarrow{\mathrm{R}}$ and $\overrightarrow{\mathrm{A}}$ Thus we write $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} . \because \overrightarrow{\mathbf{O Q}}=\overrightarrow{\mathbf{O P}}+\overrightarrow{\mathbf{P Q}}$ | 5 |

Magnitude of resultant vector:
4) Consider the triangle ABN , which is ob ained by extending the side

OA to ON. ABN is a right angled triangle.
$\operatorname{Cos} \theta=\frac{\mathrm{AN}}{\mathrm{B}} \therefore \mathrm{AN}=\mathrm{B} \operatorname{Cos} \theta$ and $\operatorname{Sin} \theta=\frac{B N}{B} \therefore B N=B \operatorname{Sin} \theta$
For $\triangle O B N$,
we have $\mathrm{OB}^{2}=\mathrm{ON}^{2}+\mathrm{BN}^{2}$


$$
\begin{aligned}
& \Rightarrow R^{2}=(A+B \cos \theta)^{2}+(B \operatorname{S} n \theta)^{2} \\
& \Rightarrow R^{2}=A^{2}+B^{2} \cos ^{2} \theta+2 A B \cos \theta+B^{2} \sin ^{2} \theta \\
& \Rightarrow R^{2}=A^{2}+B^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+2 A B \cos \theta \\
& \Rightarrow R=\sqrt{A^{2}+B^{2}+2 A B \operatorname{Cos} \theta}
\end{aligned}
$$

which is the magnitude of the resultant of $A$ and $B$ Direction of resultant vectors:
5) If $\theta$ is the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, then

$$
|\vec{A}+\vec{B}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \operatorname{Cos} \theta}
$$

If $\overrightarrow{\mathrm{R}}$ makes an angle $\alpha$ with $\overrightarrow{\mathrm{A}}$, then in $\triangle \mathrm{OBN}, \tan \alpha=\frac{\mathrm{BN}}{\mathrm{ON}}=\frac{\mathrm{BN}}{\mathrm{OA}+\mathrm{AN}}$ $\tan \alpha=\left(\frac{\mathrm{B} \operatorname{Sin} \theta}{\mathrm{A}+\mathrm{B} \operatorname{Cos} \theta}\right) ; \alpha=\tan ^{-1}\left(\frac{\mathrm{~B} \operatorname{Sin} \theta}{\mathrm{~A}+\mathrm{B} \operatorname{Cos} \theta}\right)$
(OR)
Velocity - time relation: $\qquad$ 1½ Marks

1) $\mathrm{a}=\frac{d v}{d t}$ or $\mathrm{dv}=\mathrm{a} . \mathrm{dt}$

Integrating both sides with the condition that as time changes from 0 to $t$, the velocity changes from $\mathbf{u}$ to $\mathbf{v}$. For the constant acceleration,

$$
\begin{align*}
& \int_{u}^{v} d v=\int_{0}^{t} a d t \\
& =\mathrm{a} \int_{u}^{v} d t \Rightarrow[v]_{u}^{v}=\mathrm{a}[t]_{0}^{t}  \tag{1}\\
& \mathrm{v}-\mathrm{u}=\mathrm{at}(\mathrm{or}) \mathrm{v}=\mathrm{u}+\mathrm{at}
\end{align*}
$$

Displacement - time relation: $\qquad$ $11 / 2$ Marks
2) $\mathrm{v}=\frac{d s}{d t}$ or $\mathrm{ds}=\mathrm{v} d t$ and since $\mathrm{v}=\mathrm{u}+$ at We get $\mathrm{ds}=(\mathrm{u}+\mathrm{at}) \mathrm{dt}$.

Assume that initially at time $t=0$, the particle started from the origin. At a later time, $t$, the particle displacement is $s$. Further assuming that acceleration is time independent, we have $\int_{0}^{s} d s$

$$
\begin{equation*}
=\int_{0} u d t+\int_{0}^{t} a t d t \text { or } s=u t+1 / 2 \text { at }^{2} \tag{2}
\end{equation*}
$$

| Velocity - displacement relation: $\ldots \ldots \ldots .11 / 2$ Marks |
| :--- | :--- | :--- |
| The acceleration is given by the first derivative of velocity with respect |
| to time. $\mathrm{a}=\frac{d v}{d t}=\frac{d v}{d} \frac{d}{d t}=\frac{d v}{d s} v$ [since $\mathrm{ds} / \mathrm{dt}=\mathrm{v}$ where s is distance |
| traversed] This is rewritten as $\mathrm{a}=\frac{1}{2} \frac{d v^{2}}{d s}$ or $\mathrm{ds}=\frac{1}{2 a} \mathrm{~d}\left(\mathrm{v}^{2}\right)$ |$|$

