A	MATHEMATICS - ANSWER KEY		03
$\begin{aligned} & \text { Qn } \\ & \text { no. } \end{aligned}$	Key		
Each questions from 1 to 4 carries 2 scores.			
1	a) $\mathbf{1 0 0}$ b) 50	1 1	2
2	a) $\mathbf{8 0}{ }^{\circ}$ b) $\mathbf{1 4 0}{ }^{\mathbf{0}}$	1 1	2
3	a) $\frac{3}{9}=\frac{1}{3}$ b) $\frac{3}{9}=\frac{1}{3}$	1 1	2
4	a) $x^{2}+x=2$ b) 1 or -2	1 1	2
Each questions from 5 to 10 carries 3 scores.			
5	a) 90° b) $360^{\circ}-200^{\circ}=160^{\circ}$ c) E is a point on the circle . $\left(\angle B+\angle E=180^{\circ}\right)$	1 1 1	3
6	a) $\frac{1}{2}$ b) No . The difference between two consecutive terms are not the same . $\left(\frac{1}{3}-\frac{1}{2}=\frac{-1}{6}\right)$	1 1 1	3
7	a) $\frac{40}{2}=20 \mathrm{sq} .$. b) $\frac{20}{40}=\frac{1}{2}$ c) $\frac{10}{40}=\frac{1}{4}$	1 1 1	3

8	a) $x^{2}-2 x y+y^{2}=(x-y)^{2}$ b) $x^{2}-12 x=13$ $\text { Number }=13 \text { or }-1$	1 1 1	3
9	Draw a circle of radius 4 cm . Take the angles $60^{\circ}, 150^{\circ}$ at the centre of the circle . Draw the triangle .	1 1 1	3
10	a) $3 \sqrt{3}$ b) $1+3 \sqrt{3}$ c) $\sqrt{3}$	1 1 1	3
Each questions from 11 to 21 carries 4 scores.			
11	a) For drawing the rectangle . b) For drawing the semicircle / circle . For drawing the side of the square perpendicular to the diameter . For Completing the square .	1 1 1 1	4
12	a) $\begin{aligned} & r^{2}=3^{2}+4^{2} \\ & r=\sqrt{25}=5 \mathrm{~cm} \end{aligned}$ b) $\begin{aligned} & x^{2}+(2 x)^{2}=125 \\ & O C=5 \mathrm{~cm} \end{aligned}$	1 1 1	4
13	a) -1 b) 1 c) $16{ }^{\text {th }}$ term $=0$ Sum of the first 31 terms $=31 \times 0=0$	1 1 1 1	4
14	a) $\frac{8}{12}=\frac{2}{3}$ b) Probability of getting a red bead from the first bag $=\frac{4}{12}=\frac{1}{3}$ Probability of getting a red bead from the second bag $=\frac{5}{14}$	1 1 1	4

	Probability of getting a red bead from the second bag is more . $\left(\frac{1}{3}=\frac{14}{42}, \frac{5}{14}=\frac{15}{42}\right)$	1	
15	a) $\begin{aligned} & \angle B=70^{\circ} \\ & \angle D=110^{0} \end{aligned}$ b) $\angle B+\angle D=70^{\circ}+110=180^{\circ}$ Since the opposite angles are supplementary , ABCD is cyclic .	1 1 1 1	4
16	a) $0.333 \ldots$ b) $n+0.333 \ldots$ c) Sum of the first 21 terms $\begin{aligned} & =21 \times x_{11} \\ & =21 \times(11+0.333 \ldots) \\ & =21 \times\left(11+\frac{1}{3}\right)=238 \end{aligned}$	1 1 1	4
17	a) $4 \times 3=12$ b) $\frac{2}{12}=\frac{1}{6}$ c) $\frac{3 \times 2+1 \times 1}{12}=\frac{7}{12}$ d) $\frac{1}{6}+\frac{7}{12}=\frac{9}{12}=\frac{3}{4}$	1 1 1 1	4
18	a) $\mathbf{4 0 0}$ b) $\mathbf{4 2 0}$ c) $\mathbf{4 0 0}+\mathbf{4 2 0}=\mathbf{8 2 0}$ d) $\frac{820}{40}=\frac{41}{2}$	1 1 1 1	4
19	$\begin{aligned} & \angle P Q R=30^{\circ} \\ & \angle A=60^{\circ} \\ & \angle R=90^{\circ} \\ & \angle B=120^{\circ} \end{aligned}$	1 1 1 1	4

20	a) 2 b) $105,112,119, \ldots$ c) 14	1 1 2	4
21	$\text { a) } \begin{aligned} \angle A B C & =100^{\circ} \\ \text { b) } \angle A D C & =80^{\circ} \\ \angle D A B & =85^{\circ} \\ \angle D C B & =95^{\circ} \end{aligned}$	1 1 1	4
Each questions from 22 to 29 carries 5 scores.			
22	a) 4 b) Yes . The terms of this sequence are got by adding 1 to the multiples of 3 . $(3 \times 5+1)$ c) $(3 n+1)^{2}=9 n^{2}+6 n+1$ $9 n^{2}+6 n+1$ is also got by adding 1 to a multiple of 3 .	1 1 1 1 1	5
23	a) $\begin{aligned} & \angle P=30^{\circ} \\ & \angle P B D=80^{\circ} \end{aligned}$ b) $\begin{aligned} & \angle P D B=75^{\circ} \\ & \angle A=75^{\circ} \end{aligned}$ c) 2 cm $(P A \times P B=P C \times P D)$	1 1 1 1	5
24	a) 90 $\begin{aligned} & \text { b) } 22,23,25,27,32,33,35,37,52,53,55 \text {, } \\ & 57,72,73,75,77 \\ & \text { Probability }=\frac{16}{90} \\ & \text { c) } 12,13,15,17,21,31,51,71 \\ & \text { Probability }=\frac{8}{90} \end{aligned}$	1 1 1 1 1	5

25	a) 2 cm $\text { b) } \begin{aligned} & P A \times P B=6 \times 2=12 \\ & P C \times P D=12 \\ & P C=4 \mathrm{~cm}, \quad P D=3 \mathrm{~cm} \\ & C D=7 \mathrm{~cm} \end{aligned}$	1 1 1 1 1	5
26	a) 8 b) 14 c) $4 \times 25^{2}+2 \times 25=2550$ d) No . Each term of this sequence is even and the sum of even numbers never be an odd number .	1 1 1 1 1	5
27	a) $\frac{360^{\circ}}{6}=60^{\circ}$ b) 30^{0} c) Triangle formed by joining the vertices B and C to the centre of the circle is an equilateral triangle . Radius of the circumcircle of the triangle $\mathrm{ABC}=4 \mathbf{~ c m}$	1 1 2 1	5
28	a) $22 \quad 24 \quad 26 \quad 28 \quad 30$ b) Last number in the $9^{\text {th }}$ line $=2 \times \frac{9 \times 10}{2}=90$ First number in the $10^{\text {th }}$ line $=92$ c) Last number in the $10^{\text {th }}$ line $=2 \times \frac{10 \times 11}{2}$ $=110$ Sum of all numbers in the first 10 lines $\begin{aligned} & =2+4+6+\ldots+110 \\ & =2(1+2+3+\ldots+55) \\ & =2 \times \frac{55 \times 56}{2}=3080 \end{aligned}$	1 1 1 1 1 1	5

| 29 | 5 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | 7 | 1 | |
| 3. | 1 | 1 | 5 |
| 4. | $5,-5$ | 1 | |

