

SSLC EXAM 2022-23

MATHEMATICS 81 E MODEL KEY ANSWERS

PREPARED BY: SHIVAPPA.T

STATE MATHEMATICS RP, EDUCATION WING MWD. Working as maths teacher in MMDRS, Harapanahalli town vijayanagara dist-583131 Mob.9916142961

KARNATAKA SCHOOL EXAMINATION & ASSESSMENT BOARD

MODEL KEY ANSWERS ANNUAL EXAM-2022-23

1. Answer: (A) 3

- 2. Answer : (B) 0.25
- **3. Answer** : (D) $2\prod r(r+h)$
- 4. Answer: (C) 1
- 5. Answer: (A) 45^o
- 6. Answer: (C) $\frac{AD}{DB} = \frac{AE}{EC}$
- 7. Option (D) Parallel lines
- 8. Option (B) 3 units
- 9. 80=2⁴X5¹
- 10. a=3, b=6
- 11. PQ=10cm
- 12. $x^2+2x+3=0$
- **13.** Δ=b²-4ac
 - $\Delta = (-4)^2 4x2x3$
 - Δ=16-24
 - Δ=-8
 - **Hence No real roots**
- **14.** The coordinates of the line joining the midpoints of two vertices are $P(x, y) = \left[\frac{mx^2 + nx^1}{ny^2 + ny^1}\right]$

$$y) = [\underbrace{-2}_{2}, \underbrace{-2}_{2}] = [\frac{6+4}{2}, \frac{3+7}{2}] = [\frac{10}{2}, \frac{10}{2}] = (5, 5)$$

15. Degree is 4

16. Volume of the frustum of a cone is given by $V = \frac{1}{3} \Pi h(r_1^2 + r_2^2 + r_1 r^2)$

17.

Solution:

Let us assume that $5+\sqrt{3}$ is a rational number with p and q as coprime integer and $q \neq 0$

 $\Rightarrow 5+\sqrt{3} = p / q$ $\Rightarrow \sqrt{3} = p / q - 5$ $\Rightarrow \sqrt{3} = p / q - 5$ $\Rightarrow p / q - 5 \text{ is a rational number}$ However, $\sqrt{3}$ is in irrational number

 $\cos \alpha = \frac{1}{2}$

- 22. Solution: possible outcomes:{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19} Among them prime numbers are { 11, 13, 17, 19}=4 **Probability is** $\frac{n(E)}{n(S)} = \frac{4}{11}$
- **23.** Mark point E on DC, Such that EC=6cm.

In ΔADE

 $AD^{2}=AE^{2}+DE^{2}$ $5^{2}=AE^{2}+4^{2}$ $25=AE^{2}+16$ $25-16=AE^{2}$ $AE^{2}=9$

AE=3cm

Hence the distance between two parallel lines is 3cm

24. Solution:

 $x^{2}+7x+10$

 $x^{2}+5x+2x+10$ x(x+5)+2(x+5) (x+5)(x+2) $\alpha = -5 \& @= -2$ Verification: we know that $x^{2}-(\alpha + @)x+\alpha @$ $x^{2}-(-5-2)+-7x-2$ $x^{2}+7x+10$

Hence the proof

26. Solution:

We have
$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \sqrt{\frac{1+\cos A(1+\cos A)}{1-\cos A(1+\cos A)}}$$

$$= \sqrt{\frac{(1+\cos A)2}{(1-\cos A)2}}$$

$$= \sqrt{\frac{1+\cos A}{2}}$$

$$= \sqrt{\frac{1+\cos A}{2}}$$

$$= \sqrt{\frac{1+\cos A}{2}}$$

$$= \frac{\cos A}{\sin A}$$

$$= \cos CA + \cot A$$
OR
We have $\frac{\sin A}{1+\cos A} + \frac{1+\cos A}{\sin A}$

$$= \frac{\sin 2A + (1+\cos A)2}{\sin A(1+\cos A)}$$

$$= \frac{\sin 2A + (\cos A)}{\sin A(1+\cos A)}$$

$$= \frac{\sin 2A + \cos 2A + 1 + 2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{1+1+2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{2+2\cos A}{\sin A(1+\cos A)}$$

$$= \frac{2(1+\cos A)}{\sin A(1+\cos A)}$$

- = 2 CosecA
- **27.** Solution:

We have to find mean

C.I	f	Х	fx
1-5	4	3	12
6-10	3	8	24
11-15	2	13	26
16-20	1	18	18
21-25	5	23	115
	N=15		195

Mean
$$=\frac{\sum fx}{N} = \frac{195}{15} = 13$$

OR

We have to find Mode for the following frequency data

C.I	f
1-3	9
3-5	9 f0
5-7	15 f1
7-9	9 f2
9-11	1
	N=60

LRL=5, f1=15, f0=9, f2=9 and h=3

We have formula Mode=LRL+ $\begin{cases} f1-f0\\ 2f1-f0-f2 \end{cases}$ h = $5+\frac{15-9}{30-9-9}$ x2 = $5+\frac{6}{6}$ = 5+1Mode=6

28. Solution: We have (-6, 10) and (3, -8) is divided by (-4, 6)

By section formula,

 $-4 = \left(\frac{m(3) + n(-6)}{m + n}\right) \text{ and } 6 = \left(\frac{m(-8) + n(10)}{m + n}\right)$ m+n= $\left(\frac{3m - 6n}{-4}\right)$ and m+n= $\left(\frac{-8m + 10n}{6}\right)$ on comparing both we get $\frac{3m - 6n}{-4} = \frac{-8m + 10n}{6}$ 18m-36n=32m-40n 4n=14m m/n=2/7

The ratio is 2:7

OR (1,-1), (-4, 6) & (-3, -5) (x1, y1), (x2, y2) & (x3, y3) Area of the triangle is $A = \frac{1}{2} \{x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)\}$ $= \frac{1}{2} \{1(6 + 5) - 4(-5 + 1) + (-3)(-1 - 6)\}$ $= \frac{1}{2} (11 + 16 + 21)$ $= \frac{1}{2} (48)$ = 24 sq units.

29.Given: PT and PS are tangents from an external point P to the circle with centre O.

To prove: PT = PS **Construction:** Join O to P, T and S.

Proof: In $\triangle OTP$ and $\triangle OSP$.

OT = OS ...[radii of the same circle]

 $OP = OP \dots [common]$

 $\angle OTP = \angle OSP \dots [each 90^{\circ}]$

 $\Delta OTP = \Delta OSP \dots [R.H.S.]$

 $PT = PS \dots [c.p.c.t.]$

30. Solution:

Area of shaded region= area of circle – area of sector of a circle OPQ----(1) In the given figure, OAB is an equilateral triangle.

Its area is $36\sqrt{3}$ sq cm.

We know $A = \frac{\sqrt{3}}{4} a^2$ (area of an equilateral triangle)

$$36\sqrt{3} = \frac{\sqrt{3}}{4}a^2$$

Then side of the triangle is 12cm, then radius of circle is 6cm (mid-point) At O angle should be 60° .

Area of sector =
$$\frac{60}{360} \times \frac{22}{7} \times 6 \times 6$$

= $\frac{132}{7}$

Area of a circle = $\frac{22}{7} \times 6 \times 6$

 $=\frac{1}{7}$ Equation 1 becomes

$$\frac{792}{7} - \frac{132}{7} = 94.28$$
 sq cm.

31. Solution:

32. Solution :

Let us say, the current average speed of car = x km/h. If it goes 11km/hr more then it would take 1 hour less Total distance between the two city is 132km. Therefore, according to question (132/x) - (132/(x+11)) = 1 132(x+11-x)/(x(x+11)) = 1 $132 \times 11/(x(x+11)) = 1$

 $\Rightarrow 132 \times 11 / (x(x+11)) = 1$ $\Rightarrow 132 \times 11 = x(x+11)$ $\Rightarrow x^{2} + 11 x + 1452 = 0$

$$\Rightarrow x^{2} + 11x - 1452 = 0$$
$$\Rightarrow x^{2} + 44x - 33x - 1452 = 0$$

$$\Rightarrow x^2 + 44x - 55x - 1452 = 0$$

$$\Rightarrow x(x+44) - 33(x+44) = 0$$

$$\Rightarrow (x+44)(x-33) = 0$$

 \Rightarrow X = -44, 33

As we know, Speed cannot be negative. Therefore, the speed of the car 33 km/h.

33. Solution:

C.I	Frequency	Coordinates
<20	2	(20, 2)
<25	6	(25, 6)
<30	24	(30, 24)
<35	45	(35, 45)
<40	78	(40, 78)
<45	89	(45, 89)
<50	100	(50, 100)

34. Solution: The sum of second and fourth term of the arithmetic progression is 54 a2+a4=54 and S11=693 $\frac{11}{2}$ (2a+10d)=693 a+d+a+3d=542a+4d=54---(1)From 1 and 2, subtract above we get 6d=72 d=12 thus common diffrence is 12, put this in equation 1 we get 2a+4(12)=54 2a=54-48 a=3hene first term is 3 A.P is 3, 15, 27..... Its 54th term is a+53d=3+53x12 = 3+636 = 639 According to question, 132+639=771 this will be an an=771 a+(n-1)d=771 3+12n-12=771 12n=768+1212n=780 n=65 then 65th term is 132 more than its 54th term. OR Given: a=3 and l=253 and also a20=98 We know $Sn = \frac{n}{2}(a+l)$ a+19d=98 =→ 3+19d=98 =→ d=5 $Sn = \frac{n}{2}(3+253)$ $Sn = \frac{n}{2}(256)$ Sn=nx128----→(1) We know $\operatorname{Sn}=\frac{n}{2}(2a+(n-1)d)$ $= \frac{n}{2}(6+5n-5)$ = $\frac{n}{2}(5n+1) - \cdots \rightarrow (2)$ From 1 and 2 $nx128 = \frac{n}{2}(5n+1)$ 256 = 5n + 15n=255 n=51 Then A.P from last is 253, 248, 243, a=253, d=-5

S

36.''If two triangles are equiangular, then their corresponding sides are proportional''.

Given: ∠BAC=∠EDF ∠ABC=∠DEF To prove: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ Construction: Mark points G and H on the side AB and AC such that AG=DE, AH=DF proof: in triangle AGH and DEF AG=DE.....by construction AH=DF by contsruction ∠GAH=∠EDF...Given therefore, $\triangle AGH \cong \triangle FED$ by SAS congruency thus ∠AGH=∠DEFby CPCT but ∠ABC=∠DEF ∠AGH=∠ABC thus GH∥BC Now, In triangle ABC $\frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$ Hence, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ hence proved.

37. In \triangle OAB, take OB=x m

Then egn (1) be comey x= 13 y. X=1050) Then equation (3) becomes X= 30- Z-9 $10\sqrt{3} = 30 - \frac{2-10}{\sqrt{2}}$ $10\sqrt{3} + \frac{2-10}{103} = 30$ 10x3 + 2 - 10 = 30. 20+2 = 30 20+2=30/3 Z=30/3-20, use /3=1.73 2=30(1.73)-20 = 51-9-20 12=31.9)

38. Given: Cone: area A=38.5 sq cm. we know area of circle A= $\prod r^2$ $38.5 = \frac{22}{7} r^2$ r²=12.25 r=3.5cm Then radius of the base of the cone as well as hemisphere is 3.5cm. Height of the cone is 15.5-3.5 = 12 cm, slant height of cone $l=\sqrt{122+3.52}$ $=\sqrt{144+12.25}$ $=\sqrt{156.25}$ l=12.5cm TSA of toy=CSA of cone+CSA of hemisphere $=\prod rl+2\prod r^{2}$ $=\prod r(l+2r)$ $=\frac{22}{7}$ x3.5(12.5+7) = 11(19.5)= 214.5 sq cm. Volume of Toy=volume of cone+volume of hemisphere $=\frac{1}{3}\prod r^{2}h+\frac{2}{3}\prod r^{3}$ $=\frac{1}{3}\prod r^2(h+2r)$ $=\frac{1}{3}x\frac{22}{7}x$ 3.5x3.5(12.5+7) $=\frac{11x3.5}{3}(19.5)$ = 250.25 cubic cm.