FIRST YEAR HIGHER SECONDARY EXAMINATION MARCH 2023 – ANSWER KEY

(UNOFFICIAL)

SUBJECT: CHEMISTRY

Qn. Code: FY 425

Qn. No	Sub Ons	Answer Key/Value Points								
Answer any 4 guestions from 1 to 5. Each carry 1 score										
1.		5 mol								
2.		Unnilguadium (Ung)	1	1						
3.		(c) F ⁻	1	1						
4.		3–Hydroxypentan–1–al (3–Hydroxypentanal)	1	1						
5.		Staggered conformation Or, Staggered form								
		Answer any 8 questions from 6 to 15. Each carry 2 scores								
6.	(i)	Molarity of a solution is the no. of moles of solute in 1 litre of the solution.								
		Or, Molarity (M) = no. of moles of solute	1							
		Volume of solution in litre								
	(ii)	Law of definite proportions states that a given compound always contains exactly the		2						
		same proportion of elements by weight.	1							
		OR, It states that a given compound always contains the same elements in the same								
		proportion by weight. OR, Explanation with example.								
7.		de Broglie equation is $\lambda = h/p$	1							
		Or, $\lambda = h/mv$		2						
		Where λ is the wavelength, m is the mass, v is the velocity and p is the momentum of	1	-						
		the particle.								
8.	(i)	n = 3, l = 0	1							
	(ii)	(b) $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$	1/2	2						
		Hund's Rule	1/2							
9.	(i)	Modern periodic law states that the properties of elements are the periodic	1							
		functions of their atomic numbers.		2						
	(ii)	Down a group, the atomic radius increases.	1							
10.	(i)	Ionization enthalpy is the amount of heat required to remove an electron from the	_							
		outermost shell of an isolated gaseous atom.	1							
		OR, it is the amount of heat required to convert a neutral gaseous atom to a		2						
		unipositive ion in the gaseous state.								
	(11)	Due to the stable half—filled electronic configuration (15°25°2p°) of N.	1							
11		The law states that the total enthalpy change for a process is the same whether the								
11.		reaction taking place in a single stop or in soveral stops. Or, the total onthalpy change								
		for a process is independent of the nath followed	1							
		Illustration:	-							
		$\frac{1}{1}$		2						
		by involving heat change ΛH Let the same reactant Λ is first converted to R, then to	1							
		C and finally to D involving heat changes ΔH_1 . AH_2 and AH_3 respectively.	-							

		AH AH_2 C Then according to Hess's law:							
		$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$							
		A AH D							
		OR, any other example							
12.	(i)	According to Bronsted- Lowry concept, acids are proton (H ⁺) donors and bases are							
		(H ⁺) acceptors.	1						
		OR, example: $NH_{3(g)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH^{(aq)}$							
		Here NH ₃ is a base since it accepts an H ⁺ ion to form NH ₄ ⁺ and H ₂ O is an acid since it denotes an H^+ ion to form OH ⁻		2					
	(ii)	t is defined as the negative logarithm of the hydrogen ion or hydronium ion		2					
	(11)	concentration in moles per litre (i.e. molarity)	1						
		i.e. $p^{H} = -\log[H^{+}]$	-						
		or $p^H = -\log[H_3O^+]$							
13.		It is a reaction in which a compound is dissociated (broken down) into two or more							
		components, in which at least one must be in the elemental state.	1						
		OR, Decomposition reaction may be denoted as A \rightarrow B + C		2					
		$E.g.: 2H_2O \rightarrow 2H_2 + O_2$							
		$2NH_3 \rightarrow N_2 + 3H_2$	1						
1.1		$2SU_3 \rightarrow 2SU_2 + U_2$ UK, Any other reaction [Any one example is required]							
14.		No of α bonds = 9 and no of π bonds = 2	1	2					
15.	(i)	$\frac{1}{2}$	1						
10.	(.)		_	2					
	(ii)) $C_2H_5-C_2H_5$ OR, $CH_3-CH_2-CH_2-CH_3$ OR, C_4H_{10} OR, Butane							
	1	Answer any 8 questions from 16 to 26. Each carry 3 scores	1	1					
16.	(i)	Molecular formula = Empirical formula x n, where n = <u>Molecular mass</u>	1						
		Empirical formula mass							
		OR, Empirical formula = Molecular formula							
	(ii)	Combustion of methane can be represented as:							
	(")	$CH_4(q) + 2 \Omega_2(q) \rightarrow C\Omega_2(q) + 2 H_2\Omega(q)$	1	3					
		16g 64g 44g 36g							
		Amount of O ₂ required for the complete combustion of 16g methane = 64g							
		So, the amount of O_2 required for the complete combustion of 48g methane							
		$= 64 \times 48 = 192 \text{ g O}_2$	1						
47		16	-						
1/.		Ans: Ubservations:							
		i. Where α is a particle particles was deflected by small angles	11/2	2					
		iii. A very few α - particles were rebounded (Or, deflected by small angles.	1/2	5					

		Conclusions:								
		i. Most space in the atom is empty.								
		ii. In an atom, the positive charge is concentrated in a very small volume at the	1½							
		centre called nucleus.								
		iii. The volume of the nucleus is negligibly small as compared to the total volume								
		of the atom. (The radius of the atom is about 10^{-10} m, while that of nucleus is								
		10 ⁻¹⁵ m)								
18.	(i)	This is because of the greater effective nuclear charge in Na ⁺ .	1							
		OR, Na ⁺ has fewer electrons than Na but the same nuclear charge.								
	(ii)	Because of the absence of vacant d-orbitals in nitrogen.	1	2						
		Due to larger size and less electron-electron repulsion in chlorine. [Or, Due to the		5						
	(iii)	compactness of the 2p subshell of F, electronic repulsion is greater in F and hence it								
		does not easily add electron].	1							
19.	(i)	Dipole moment is the product of charge at one end (e) and distance between the	1							
		charges (r). i.e. μ = e x r.								
	(ii)	This is because in the case of NH_3 , the orbital dipole due to lone pair and the								
		resultant dipole moment of the three N – H bonds are in the same direction. So, they								
		get added together. But in NF ₃ , the orbital dipole is in the opposite direction to the	2							
		resultant dipole moment of the three N–F bonds. So they get partially cancelled. So								
		NH ₃ has higher dipole moment than NF ₃ .								
		OR,		3						
		NN								
		H H								
		NH ₃ NF ₃								
20.	(i)	Octet rule states that atoms containing 8 electrons in their valence shell are stable.	1							
		OR, atoms undergo chemical reaction in order to attain 8 electrons in the valence								
		shell.								
	(ii)	Limitations of Octet Rule:								
		1) It could not explain the stability of compounds containing less than 8								
		electrons around the central atom. E.g. LiCl, BeH ₂ , BCl ₃ etc.								
		2) It could not explain the stability of molecules containing odd number of								
		electrons (like NO, NO ₂ etc.).		3						
		3) It could not explain the stability of molecules containing more than 8	2							
		electrons around the central atom (i.e. expanded octet). E.g. PF ₅ , SF ₆ , H ₂ SO ₄ ,								
		4) Octet rule is based upon the chemical inertness of noble gases. But some								
		noble gases like xenon and krypton form compounds with F and O.								
		5) This theory does not account for the shape of molecules.								
		6) It does not explain the relative stability of the molecules. [Any 2 Required]								
21.	(i)	It states that the entropy of the universe always increases during every spontaneous	1							
	(.)	process.	-	3						
				-						

	(ii) (iii)	Entropy is a measure of degree of disorderness or randomness of a system. If Gibb's energy change (AG) is negative, the process is spontaneous process.	1						
22	(ii)	Solutions which resist the change in pH on dilution or with the addition of small	-						
22.	(י)	amount of acid or alkali is called Buffer solution.							
	(ii)	E.g. for acidic buffer is an equimolar mixture of acetic acid and sodium acetate/OR, an equimolar mixture of HCN and NaCN/OR, an equimolar mixture of Boric acid and Borax/OR, an equimolar mixture of any other weak acid and its salt with a strong base.							
		E.g. for a basic buffer is an equimolar mixture of NH ₄ OH and NH ₄ Cl/ OR, an equimolar mixture of NH ₄ OH and NH ₄ NO ₃ / OR, an equimolar mixture of any other weak base and its salt with a strong acid.	1/2	,					
	(iii)	Common ion effect is the suppression of the dissociation of a weak electrolyte by the addition of a strong electrolyte containing a common ion/ OR, Example	1						
23.		Oxidation number method: Step 1: The skeletal equation is: $MnO_4^- + I^- \rightarrow MnO_2 + I_2$ Step 2: Assign the oxidation number of each element and identify the elements undergoing change in oxidation number. $+7 -2 -1 +4 -2 = 0$ $MnO_4^- + I^- \rightarrow MnO_2 + I_2$ Here the oxidation number of Mn and I are changed. Step 3: Calculate the change in oxidation number and make them equal by multiplying with suitable number. Here the oxidation number of Mn is decreased by 3 and that of I is increased by 1. In order to equate them, multiply MnO_4^- by 2 and I^- by 6.							
		$2 \text{ MnO}_4^- + 6 \text{ I}^- \rightarrow \text{MnO}_2 + \text{I}_2$ Step 4: Now balance all the atoms except Oxygen and Hydrogen $2 \text{ MnO}_4^- + 6 \text{ I}^- \rightarrow 2 \text{ MnO}_2 + 3 \text{ I}_2$ Step 5: Now balance the ionic charges on both sides. Here the net ionic charge on LHS is -8 and on RHS is 0. To equate them, add 8 OH ⁻ on RHS [since the reaction takes place in basic medium]. $2 \text{ MnO}_4^- + 6 \text{ I}^- \rightarrow 2 \text{ MnO}_2 + 3 \text{ I}_2 + 8 \text{ OH}^-$ Step 6: Now balance hydrogen atoms by adding sufficient number of H ₂ O molecules. Here add 4 H ₂ O molecule on LHS. $2 \text{ MnO}_4^- + 6 \text{ I}^- + 4 \text{ H}_2\text{O} \rightarrow 2 \text{ MnO}_2 + 3 \text{ I}_2 + 8 \text{ OH}^-$ Now the equation is balanced.	6 x ½	3					
24.	(i) (ii)	Detection of Nitrogen: To a little of sodium fusion extract add freshly prepared ferrous sulphate (FeSO ₄) solution. Heated to boiling, cooled and acidified with dil. H ₂ SO ₄ . Blue or green colouration or precipitate indicates the presence of nitrogen. Detection of Sulphur:	1½	3					
		Colouration indicates the presence of sulphur. OR, The sodium fusion extract is acidified with acetic acid and lead acetate is added to it. A black precipitate indicates the presence of sulphur.	1½						
25.	(i)	CH ₃ –CHBr–CH ₃ (2–Bromopropane)	1						

	(ii)	Markownikoff's rule [Markovnikov's rule]								
		The rule states that when an unsymmetrical reagent is added to an unsymmetrical	_							
		alkene, the negative part of the reagent gets attached to the carbon containing lesser	1							
		number of hydrogen atoms.								
26.	(i)	Isomerisation : n-Alkanes on heating in the presence of anhydrous aluminium								
		chloride and hydrogen chloride gas isomerise to branched chain alkanes.								
		OR,	1							
		CH ₃ -(CH ₂) ₄ -CH ₃ Anhydrous AlCl ₃ /HCl CH ₃ -CH-CH ₂ -CH ₂ -CH ₃ + CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ CH ₃ CH ₃								
		(n-hexane) (2-Methylpentane) (3-Methyl pentane)								
	(ii)	Aromatization: n-Alkanes having six or more carbon atoms on heating to 773K at 10-	1							
		supported over alumina, we get aromatic compounds. This reaction is known as	T							
		aromatization.								
		OR, CH_3 - $(CH_2)_4$ - CH_3 Cr_2O_3 or V_2O_5 or Mo_2O_3		3						
		Benzene								
	(iii)	Pyrolysis : Alkanes having six or more carbon atoms on heating at higher temperature								
		decompose to form lower alkanes, alkenes etc. This reaction is known as pyrolysis.								
		OR,								
		$ C_6 H_{12} + H_2 $								
		$C_6H_{14} - 773K + C_2H_6$								
		$\blacktriangleright C_3H_6 + C_2H_4 + CH_4$								
	Answer any 4 questions from 27 to 31. Each carry 4 scores									
27.	(i)	Lyman Series, Balmer series, Paschen series, Brackett series, Pfund series.	2							
	(;;)	[Any 4 required]								
	(11)	(i) It could not explain the fine spectrum of hydrogen atom								
		(ii) It could not explain the spectrum of atoms other than hydrogen.		4						
		(iii) It could not explain Stark effect and Zeeman effect.	2							
		(iv) It could not explain the ability of atoms to form molecules by chemical bonds.								
		(v) It did not consider the wave character of matter and Heisenberg's uncertainty								
28	(i)	1) In molecules, the electrons are present in some special type of orbitals called								
20.	(')	molecular orbitals (M.Os).								
		2) The atomic orbitals (A.Os) of comparable energy and proper symmetry combine								
		to form molecular orbitals.								
		3) Atomic orbitals are monocentric, while molecular orbitals are polycentric.								
		4) The number of molecular orbitals formed = the number of atomic orbitals								
		is called bonding molecular orbital (BMO) and the other is called anti-bonding								
		molecular orbitals (ABMO)								
L	I		I	L						

nuclei.The molecular orbitals are filled according to 3 rules – Aufbau principle, Pauli's exclusion principle and Hund's rule. [Any 2 required](ii) $\overline{\mathbf{A} \mathbf{B}}$ $\overline{\mathbf{B} \mid \mathbf{BeCl_2} \ \mathbf{d} \ \mathbf{sp}}$ $\overline{\mathbf{H} \mid \mathbf{CH_4} \ \mathbf{b} \ \mathbf{sp}^3}$ $\overline{\mathbf{H} \mid \mathbf{CH_4} \ \mathbf{b} \ \mathbf{sp}^3}$ $4 \times \frac{1}{2}$ 29.(i)It is the standard enthalpy change for the formation of one mole of a compound from its elements in their most stable state of aggregation (reference state). OR, It is the enthalpy of formation of a compound in the standard state [i.e. at 1 bar pressure, generally 298 K temperature and the substances are in their pure form.]1(ii)The required equation is: C(graphite) + 2H_2(g) + ½ O_2(g) \longrightarrow CH ₃ OH(I) The given data are: CH ₃ OH(I) + 3/2 O_2(g) \longrightarrow CO ₂ (g) + 2H ₂ O(I); Δ :H ⁰ = -326 kJ/mol(1) C (graphite) + O_2(g) \longrightarrow CO ₂ (g): Δ :H ⁰ = -393 H/mol(2) H ₂ (g) + ½ O_2(g) \longrightarrow H ₂ O(I); Δ :H ⁰ = -286 kJ/mol											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		The molecular orbitals are filled according to 3 rules – Aufbau principle, Pauli's exclusion principle and Hund's rule. [Any 2 required]									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ii)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,		Α		В					
$ \begin{array}{ c c c c c c } \hline l . & PC_{15} & a. & sp^{3}d \\ \hline l . & CH_{4} & b. & sp^{3} \\ \hline l . & BC_{13} & c. & sp^{2} \\ \hline l . & BC_{14} & c. & sp^{2} \\ \hline l . & BC_{$			١.	BeCl ₂	d.	sp					
Image: Image of the set of			П.	PCI ₅	a.	sp³d		4 x ½			
IV.BCl3c.sp229.(i)It is the standard enthalpy change for the formation of one mole of a compound from its elements in their most stable state of aggregation (reference state). OR, It is the enthalpy of formation of a compound in the standard state [i.e. at 1 bar pressure, generally 298 K temperature and the substances are in their pure form.]1(ii)The required equation is: C(graphite) + 2H ₂ (g) + ½ O ₂ (g) \longrightarrow CH ₃ OH(l) The given data are: CH ₃ OH(l) + 3/2 O ₂ (g) \longrightarrow CO ₂ (g) + 2H ₂ O(l); Δ ,H ⁰ = -726 kJ/mol(1) C (graphite) + O ₂ (g) \longrightarrow CO ₂ (g); Δ ,H ⁰ = -393 kJ/mol(2) H ₂ (g) + ½ O ₂ (g) \longrightarrow CO ₂ (g); Δ ,H ⁰ = -286 kJ/mol(2) H ₂ (g) + ½ O ₂ (g) \longrightarrow CH ₃ OH(l) + 3/2 O ₂ (g); Δ ,H ⁰ = 726 kJ/mol(3) On reversing equation (1), we get CO ₂ (g) + 2H ₂ O(l); Δ ,H ⁰ = -286 kJ/mol(5) Now add equations (2) + (4) + (5) and simplify. Then we get, C(graphite) + 2H ₂ (g) + \mathcal{Y}_2 O(g) \longrightarrow CH ₃ OH(l), Δ ,H ⁰ = -286 kJ/mol(5) Now add equations (2) + (4) + (5) and simplify. Then we get, C(graphite) + 2H ₂ (g) + \mathcal{Y}_2 O(g) \longrightarrow CH ₃ OH(l), Δ ,H ⁰ = -286 kJ/mol(5) Now add equations (2) + (4) + (5) and simplify. Then we get, C(graphite) + 2H ₂ (g) + \mathcal{Y}_2 O(g) \longrightarrow CH ₃ OH(l), Δ ,H ⁰ = -393 + 726 + -572 = _239 kJ/mol 30.(i)An equilibrium reaction in which all the reactants and products are in the same phase is called homogeneous equilibrium. E.g. N ₂ (g) + 3H ₂ (g) = \mathcal{Y} O ₂ (g) OR, C ₂ (g) OR, C ₂ (g) OR, C ₂ (g) OR, Any other correct example.1(ii)K _p = K _c .(RT) ^{Δn} Here Δ n = 2 - 2 = 0. [Assuming H ₂ , I ₂ and HI are in gaseous state] So K _p = K _c 131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation			III.	CH4	b.	sp ³					
29.(i)It is the standard enthalpy change for the formation of one mole of a compound from its elements in their most stable state of aggregation (reference state). OR, It is the enthalpy of formation of a compound in the standard state [i.e. at 1 bar pressure, generally 298 K temperature and the substances are in their pure form.]1(ii)The required equation is: C(graphite) + $2H_2(g) + ½ O_2(g) \longrightarrow CH_3OH(I)$ The given data are: CH ₃ OH(I) + $3/2 O_2(g) \longrightarrow CO_2(g) + 2H_2O(I); \Delta_rH^0 = -726 kJ/mol(1)C (graphite) + O_2(g) \longrightarrow CO_2(g); \Delta_rH^0 = -726 kJ/mol(2)H2(g) + ½ O_2(g) \longrightarrow CO_2(g); \Delta_rH^0 = -726 kJ/mol(3)On reversing equation (1), we getCO_2(g) + 2H_2O(I) \longrightarrow CH_3OH(I) + 3/2 O_2(g); \Delta_rH^0 = 726 kJ/mol(4)On multiplying eqn. (3) by 2, we get2H_2(g) + O_2(g) \longrightarrow 2H_2O(I); \Delta_rH^0 = -2x 286 = -572 kJ/mol(5)Now add equations (2) + (4) + (5) and simplify. Then we get,C(graphite) + 2H_2(g) + ½ O_2(g) \longrightarrow CH_3OH(I), \Delta_rH^0 = -393 + 726 + -572 = -239 kJ/mol130.(i)An equilibrium reaction in which all the reactants and products are in the samephase is called homogeneous equilibrium.E.g. N_{2(g)} + 3H_{2(g)} \Rightarrow 2NH_{3(g)} OR,2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)} OR, Any other correct example.1(ii)Kp0 = Kc. (RT) AnHere \Delta n = 2 - 2 = 0. [Assuming H2, I2 and HI are in gaseous state]So Kp = Kc131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractionaldistillation/Distillation under reduced pressure.(iii)1(iii)Electromeric effect is defined as the complete transfer of a shared pair of \pi-electronsto one of the atoms joined by a multiple bond in presence of an attacking reagent.There are two types of E effects: Positive$			IV.	BCl ₃	с.	sp ²					
(ii)The required equation is: C(graphite) + 2H ₂ (g) + ½ O ₂ (g) \longrightarrow CH ₃ OH(I)The given data are: CH ₃ OH(I) + 3/2 O ₂ (g) \longrightarrow CO ₂ (g) + 2H ₂ O(I); Δ_r H ⁰ = -726 kJ/mol(1) C (graphite) + O ₂ (g) \longrightarrow CO ₂ (g); Δ_r H ⁰ = -393 kJ/mol(2) H ₂ (g) + ½ O ₂ (g) \longrightarrow H ₂ O(I); Δ_r H ⁰ = -286 kJ/mol(3) On reversing equation (1), we get CO ₂ (g) + 2H ₂ O(I); Δ_r H ⁰ = -2 × 286 = .572 kJ/mol(4) On multiplying eqn. (3) by 2, we get 2H ₂ (g) + O ₂ (g) \longrightarrow 2H ₂ O(I); Δ_r H ⁰ = -2 × 286 = .572 kJ/mol(5)Now add equations (2) + (4) + (5) and simplify. Then we get, C(graphite) + 2H ₂ (g) + ½ O ₂ (g) \rightarrow CH ₃ OH(I), Δ_r H ⁰ = -393 + 726 + .572 = .239 kJ/mol30.(i)An equilibrium reaction in which all the reactants and products are in the same phase is called homogeneous equilibrium. E.g. N ₂ (g) + 3H ₂ (g) \Rightarrow 2NH ₃ (g) OR, 2SO ₂ (g) + O ₂ (g) \Rightarrow 2SO ₃ (g) OR, Any other correct example.(ii)K _p = K _c . (RT) ^{Δn} Here Δn = 2 - 2 = 0. [Assuming H ₂ , I ₂ and HI are in gaseous state] So K _p = K _c 131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(iii)Electromeric effect is defined as the complete transfer of a shared pair of π-electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative	29.	(i)	It is the standard enthalpy change for the formation of one mole of a compound from its elements in their most stable state of aggregation (reference state). OR, It is the enthalpy of formation of a compound in the standard state [i.e. at 1 bar pressure, generally 298 K temperature and the substances are in their pure form.]								
On reversing equation (1), we get1 $CO_2(g) + 2H_2O(I) \longrightarrow CH_3OH(I) + 3/2 O_2(g); \Delta_rH^0 = 726 kJ/mol(4)1On multiplying eqn. (3) by 2, we get12H_2(g) + O_2(g) \longrightarrow 2H_2O(I); \Delta_rH^0 = -2 \times 286 = -572 kJ/mol(5)1Now add equations (2) + (4) + (5) and simplify. Then we get,1C(graphite) + 2H_2(g) + ½ O_2(g) \rightarrow CH_3OH(I), \Delta_rH^0 = -393 + 726 + -572 = -239 kJ/mol130.(i) An equilibrium reaction in which all the reactants and products are in the same1phase is called homogeneous equilibrium.1E.g. N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} OR,12SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} OR, Any other correct example.1(ii) K_p = K_c.(RT)^{\Delta n}1Here \Delta n = 2 - 2 = 0. [Assuming H_2, I_2 and HI are in gaseous state]1So K_p = K_c131.(i) Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional1(iii) Distillation under reduced pressure.1(iii) Electromeric effect is defined as the complete transfer of a shared pair of \pi-electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent.1There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1$		(ii)	The required equation is: C(graphite) + $2H_2(g) + \frac{1}{2}O_2(g) \longrightarrow CH_3OH(I)$ The given data are: $CH_3OH(I) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(I); \Delta_rH^0 = -726 \text{ kJ/mol} \dots (1)$ $C (graphite) + O_2(g) \longrightarrow CO_2(g); \Delta_rH^0 = -393 \text{ kJ/mol} \dots (2)$ $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(I); \Delta_rH^0 = -286 \text{ kI/mol} (3)$								
C(graphite) + 2H_2(g) + ½ O_2(g) \rightarrow CH ₃ OH(I), Δ_r H° = -393 + 726 + -572 = -239 kJ/mol30.(i)An equilibrium reaction in which all the reactants and products are in the same phase is called homogeneous equilibrium. E.g. N _{2(g)} + 3H _{2(g)} \rightleftharpoons 2NH _{3(g)} OR, 2SO _{2(g)} + O _{2(g)} \rightleftharpoons 2SO _{3(g)} OR, Any other correct example.1(ii)K _p = K _c .(RT) Δ^n Here Δ n = 2 - 2 = 0. [Assuming H ₂ , I ₂ and HI are in gaseous state] So K _p = K _c 131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(ii)Distillation under reduced pressure. Electromeric effect is defined as the complete transfer of a shared pair of π -electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1			Now a	On revo CO ₂ (g) On mul 2H ₂ (g) add equa	ersing e + 2H ₂ O(ltiplying + O ₂ (g) tions (2	equation ((I) g eqn. (3) 2) + (4) + (1), we get → CH ₃ OH(I) + 3/2 O ₂ (g); $\Delta_r H^0 = 726 \text{ kJ/mol}$ (4) by 2, we get → 2H ₂ O(I); $\Delta_r H^0 = -2 \times 286 = -572 \text{ kJ/mol}$ (5) 5) and simplify. Then we get,	1 1 1			
30.(i)All equilibrium freaction in which all the feactants and products are in the same1phase is called homogeneous equilibrium. E.g. $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} OR$, $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} OR$, Any other correct example.1(ii) $K_p = K_c.(RT)^{\Delta n}$ Here $\Delta n = 2 - 2 = 0$. [Assuming H_2 , I_2 and HI are in gaseous state] So $K_p = K_c$ 131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(ii)Distillation under reduced pressure.1(iii)Electromeric effect is defined as the complete transfer of a shared pair of π -electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1	20	(i)	C(graphite) + 2H ₂ (g) + ½ O ₂ (g) \rightarrow CH ₃ OH(I), Δ_r H ^o = -393 + 726 + -572 = <u>-239 kJ/mol</u>								
Finde instant in the private instant in the private intermediation of the private instant in the private instant in the private intermediate intermediate in the private intermediate in	50.	(1)	nhase	is called	homog	veneous e	equilibrium	1			
Image: Mage:			$F \sigma = N_{2(\sigma)} + 3H_{2(\sigma)} \Rightarrow 2NH_{2(\sigma)} OR$								
(ii) $K_p = K_c.(RT)^{\Delta n}$ Here $\Delta n = 2 - 2 = 0$. [Assuming H_2 , I_2 and HI are in gaseous state]131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional1distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(ii)Distillation under reduced pressure.1(iii)Distillation under reduced pressure.1(iii)Electromeric effect is defined as the complete transfer of a shared pair of π -electrons1to one of the atoms joined by a multiple bond in presence of an attacking reagent.1There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1			$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} OR$, Any other correct example.								
(ii) $K_p = K_c(RT)^2$ Here $\Delta n = 2 - 2 = 0$. [Assuming H_2 , I_2 and HI are in gaseous state]131.(i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional1distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(ii)Distillation under reduced pressure.1(iii)Electromeric effect is defined as the complete transfer of a shared pair of π -electrons1(iii)Electromeric effect is defined by a multiple bond in presence of an attacking reagent.1There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1		(ii)	$\mathbf{K} = \mathbf{K} (\mathbf{PT}) \Delta \mathbf{n}$								
So Kp = Kc131. (i)Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional1distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required].1(ii)Distillation under reduced pressure.1(iii)Distillation under reduced pressure.1(iii)Electromeric effect is defined as the complete transfer of a shared pair of π -electrons1to one of the atoms joined by a multiple bond in presence of an attacking reagent.1There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1		(11)	$H_{\text{re } \Lambda n} = 2 - 2 = 0$ [Assuming H ₂] and H are in assecus state]								
 31. (i) Sublimation/Crystallisation/Simple Distillation/Steam distillation/Fractional 1 distillation/Distillation under reduced pressure/Differential extraction/Chromatography etc. [Any 2 methods required]. (ii) Distillation under reduced pressure. (iii) Electromeric effect is defined as the complete transfer of a shared pair of π-electrons 1 to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative 		So $K_n = K_c$						1			
 extraction/Chromatography etc. [Any 2 methods required]. (ii) Distillation under reduced pressure. (iii) Electromeric effect is defined as the complete transfer of a shared pair of π-electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative The description of the state o	31.	(i)	Sublin distilla	Jubimation/Crystallisation/Simple Distillation/Steam distillation/Fractional stillation/Distillation under reduced pressure/Differential							
 (ii) Distillation under reduced pressure. (iii) Electromeric effect is defined as the complete transfer of a shared pair of π-electrons to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative 			extraction/Chromatography etc. [Any 2 methods required].								
(iii) Electromeric effect is defined as the complete transfer of a shared pair of π -electrons 1 to one of the atoms joined by a multiple bond in presence of an attacking reagent. There are two types of E effects: Positive Electromeric effect (+E effect) and Negative 1		(ii)	Distillation under reduced pressure.								
to one of the atoms joined by a multiple bond in presence of an attacking reagent.There are two types of E effects: Positive Electromeric effect (+E effect) and Negative1		(iii)	Electr	omeric e	ffect is	defined a	is the complete transfer of a shared pair of π -electrons	1			
Electromeric effect (-E effect).			to one There Electr	e of the a are two omeric e	itoms jo types o ffect (-E	oined by a of E effect E effect).	a multiple bond in presence of an attacking reagent. s: Positive Electromeric effect (+E effect) and Negative	1			
